Papers
My full list of papers can be found at my Google Scholar.
From Explicit CoT to Implicit CoT: Learning to Internalize CoT Step by Step
Yuntian Deng, Yejin Choi, Stuart Shieber. In submission |
| |
Implicit Chain of Thought Reasoning via Knowledge Distillation
Yuntian Deng, Kiran Prasad, Roland Fernandez, Paul Smolensky, Vishrav Chaudhary, Stuart Shieber. In submission |
| |
Magpie: Alignment Data Synthesis from Scratch by Prompting Aligned LLMs with Nothing
Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yuntian Deng, Radha Poovendran, Yejin Choi, Bill Yuchen Lin. In submission |
| |
WildBench: Benchmarking LLMs with Challenging Tasks from Real Users in the Wild
Bill Yuchen Lin, Yuntian Deng, Khyathi Chandu, Faeze Brahman, Abhilasha Ravichander, Valentina Pyatkin, Nouha Dziri, Ronan Le Bras, Yejin Choi. In submission |
| |
WildHallucinations: Evaluating Long-form Factuality in LLMs with Real-World Entity Queries
Wenting Zhao, Tanya Goyal, Yu Ying Chiu, Liwei Jiang, Benjamin Newman, Abhilasha Ravichander, Khyathi Chandu, Ronan Le Bras, Claire Cardie, Yuntian Deng, Yejin Choi. In submission |
| |
WildVis: Open Source Visualizer for Million-Scale Chat Logs in the Wild
Yuntian Deng, Wenting Zhao, Jack Hessel, Xiang Ren, Claire Cardie, Yejin Choi. EMNLP 2024 Demo |
| |
WildChat: 1M ChatGPT Interaction Logs in the Wild
Wenting Zhao, Xiang Ren, Jack Hessel, Claire Cardie, Yejin Choi, Yuntian Deng. ICLR 2024 Spotlight Featured in the Washington Post Used in OpenAI's o1 for safety evaluation Used in Anthropic's Claude 3 for evaluating refusals |
| |
MixEval: Deriving Wisdom of the Crowd from LLM Benchmark Mixtures
Jinjie Ni, Fuzhao Xue, Xiang Yue, Yuntian Deng, Mahir Shah, Kabir Jain, Graham Neubig, Yang You. NeurIPS 2024 |
| |
Tree Prompting: Efficient Task Adaptation without Fine-Tuning
John Xavier Morris*, Chandan Singh*, Alexander M. Rush, Jianfeng Gao, Yuntian Deng. EMNLP 2023 |
| |
Markup-to-Image Diffusion Models with Scheduled Sampling
Yuntian Deng, Noriyuki Kojima, Alexander M. Rush. ICLR 2023 |
| |
Semi Parametric Inducing Point Networks
Richa Rastogi, Yair Schiff, Alon Hacohen, Zhaozhi Li, Ian Lee, Yuntian Deng, Mert R. Sabuncu, Volodymyr Kuleshov. ICLR 2023 |
| |
Model Criticism for Long-Form Text Generation
Yuntian Deng, Volodymyr Kuleshov, Alexander M Rush. EMNLP 2022 |
| |
GenSLMs: Genome-scale language models reveal SARS-CoV-2 evolutionary dynamics
Maxim Zvyagin*, Alexander Brace*, Kyle Hippe*, Yuntian Deng*, Bin Zhang, Cindy Orozco Bohorquez, Austin Clyde, Bharat Kale, Danilo Perez-Rivera, Heng Ma, Carla M. Mann, Michael Irvin, J. Gregory Pauloski, Logan Ward, Valerie Hayot, Murali Emani, Sam Foreman, Zhen Xie, Diangen Lin, Maulik Shukla, Weili Nie, Josh Romero, Christian Dallago, Arash Vahdat, Chaowei Xiao, Thomas Gibbs, Ian Foster, James J. Davis, Michael E. Papka, Thomas Brettin, Rick Stevens, Anima Anandkumar, Venkatram Vishwanath, Arvind Ramanathan. ACM Gordon Bell Special Prize for Covid Research |
| |
Low-Rank Constraints for Fast Inference in Structured Models
Justin Chiu*, Yuntian Deng*, Alexander M. Rush. NeurIPS 2021 |
| |
Sequence-to-Lattice Models for Fast Translation
Yuntian Deng, Alexander M. Rush. EMNLP 2021 Findings |
| |
Rationales for Sequential Predictions
Keyon Vafa, Yuntian Deng, David Blei, Alexander Rush. EMNLP 2021 (oral) |
| |
Residual Energy-Based Models for Text
Anton Bakhtin*, Yuntian Deng*, Sam Gross, Myle Ott, Marc'Aurelio Ranzato, Arthur Szlam. JMLR 2021 |
| |
Cascaded Text Generation with Markov Transformers
Yuntian Deng, Alexander M. Rush. NeurIPS 2020 |
| |
Residual Energy-Based Models for Text Generation
Yuntian Deng, Anton Bakhtin, Myle Ott, Arthur Szlam, Marc'Aurelio Ranzato. ICLR 2020 Referenced by Meta's Llama 2 Referenced by the diffusion paper (DDPM) |
| |
AdaptivFloat: A Floating-point based Data Type for Resilient Deep Learning Inference
Thierry Tambe, En-Yu Yang, Zishen Wan, Yuntian Deng, Vijay Janapa Reddi, Alexander Rush, David Brooks, Gu-Yeon Wei. DAC 2020 (Best Paper) |
| |
Neural Linguistic Steganography
Zachary Ziegler*, Yuntian Deng*, Alexander Rush. EMNLP 2019 (oral) |
| |
Challanges in end-to-end neural scientific table recognition
Yuntian Deng, David Rosenberg, Gideon Mann. ICDAR 2019 |
| |
Latent Alignment and Variational Attention
Yuntian Deng*, Yoon Kim*, Justin Chiu, Demi Guo, Alexander M. Rush. NIPS 2018 |
| |
Bottom-Up Abstractive Summarization
Sebastian Gehrmann, Yuntian Deng, Alexander Rush. EMNLP 2018 |
| |
Image-to-Markup Generation with Coarse-to-Fine Attention
Yuntian Deng, Anssi Kanervisto, Jeffrey Ling, and Alexander M. Rush. ICML 2017 |
| |
OpenNMT: Open-Source Toolkit for Neural Machine Translation
Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, Alexander M. Rush. ACL 2017 Demo (Best Demo Runner-up) |
| |
Learning Latent Space Models with Angular Constraints
Pengtao Xie, Yuntian Deng, Yi Zhou, Abhimanu Kumar, Yaoliang Yu, James Zou, Eric P Xing. ICML 2017 |
| |
Neural Machine Translation with Recurrent Attention Modeling
Zichao Yang, Zhiting Hu, Yuntian Deng, Chris Dyer, Alex Smola. EACL 2017 |
| |
Dropout with expectation-linear regularization
Xuezhe Ma, Yingkai Gao, Zhiting Hu, Yaoliang Yu, Yuntian Deng, Eduard Hovy. ICLR 2017 |
| |
Learning Concept Taxonomies from Multi-modal Data
Hao Zhang, Zhiting Hu, Yuntian Deng, Mrinmaya Sachan, Zhicheng Yan, Eric P. Xing. ACL 2016 |
| |
Diversifying Restricted Boltzmann Machine for Document Modeling
Pengtao Xie, Yuntian Deng, Eric P. Xing. KDD 2015 |
| |
Entity Hierarchy Embedding
Zhiting Hu, Poyao Huang, Yuntian Deng, Yingkai Gao, Eric P. Xing. ACL 2015 |
|