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Learning Goals

▶ Explain how we can perform probabilistic inference more
efficiently using the variable elimination algorithm.

▶ Define factors. Manipulate factors using operations restrict,
sum out, multiply and normalize.

▶ Describe/trace/implement the variable elimination algorithm
for calculating a prior or a posterior probability given a
Bayesian network.

▶ Explain how the elimination ordering affects the complexity of
the variable elimination algorithm.

▶ Know about approximate statistical inference.
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A Bayesian Network for the Holmes Scenario

P (R|¬E) = 0.0002
P (R| E) = 0.9

P (B) = 0.0001

P (E) = 0.0003

P (A|¬B ∧ ¬E) = 0.01
P (A|¬B ∧ E) = 0.2
P (A| B ∧ ¬E) = 0.95
P (A| B ∧ E) = 0.96

P (W |¬A) = 0.4
P (W | A) = 0.8

P (G|¬A) = 0.04
P (G| A) = 0.4

E

B

R

A

G

W
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Answering a Question

What is the probability that a burglary is happening
given that Dr. Watson and Mrs. Gibbon both call?

P (B|w ∧ g)

▶ Query variables: B

▶ Evidence variables: W and G

▶ Hidden variables: E, A, and R.

Notice the new notation: capital letters for random variables and lowercase

letters for values.
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Answering the query using the joint distribution

Evaluate P (B|w ∧ g) in terms of known distributions from the
Bayesian network.

→ Following the approach from Lecture 6:

P (B|w ∧ g) =
P (B ∧ w ∧ g)

P (w ∧ g)

=
P (B ∧ w ∧ g)

P (b ∧ w ∧ g) + P (¬b ∧ w ∧ g)

∝ P (B ∧ w ∧ g)

∝
∑
e

∑
a

∑
r

P (B ∧ e ∧ a ∧ w ∧ g ∧ r)

∝
∑
e

∑
a

∑
r

P (B)P (e)P (a|B ∧ e)P (w|a)P (g|a)P (r|e)
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Q #1: Number of operations using the joint distribution

How many addition and multiplication operations do we need
to calculate the expression below?∑

e

∑
a

∑
r

P (B)P (e)P (a|B ∧ e)P (w|a)P (g|a)P (r|e)

(A) ≤ 10

(B) 11-20

(C) 21-40

(D) 41-60

(E) ≥ 61

→ Correct answer is (D). 47 operations.
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Is there any duplication?

▶ P (B) appears in every single term, but it doesn’t involve any
of the three hidden variables.

▶ P (B) can be thought of as a constant number.

▶ If you pull P (B) outside of the summation, you decrease 8
multiplication to 1 multiplication

▶ Push summation to as right as possible.
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Answering the query using variable elimination algorithm∑
e

∑
a

∑
r

P (B)P (e)P (a|B ∧ e)P (w|a)P (g|a)P (r|e)

→ We should move the summations as much to the right of the
expression as possible to reduce the overall # of operations.

=
∑
e

∑
a

∑
r

P (B)P (e)P (a|B ∧ e)P (w|a)P (g|a)P (r|e)

= P (B)
∑
e

P (e)
∑
a

P (a|B ∧ e)P (w|a)P (g|a)
∑
r

P (r|e)

= P (B)
∑
e

P (e)
∑
a

P (a|B ∧ e)P (w|a)P (g|a)
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Q #2: Number of operations via the variable elimination
algorithm

How many addition and multiplication operations do we need
to calculate the expression below?

P (B)
∑
e

P (e)
∑
a

P (a|B ∧ e)P (w|a)P (g|a)

(A) ≤ 10

(B) 11-20

(C) 21-40

(D) 41-60

(E) ≥ 61

→ The inner term requires 1 add + 4 mul.
It requires 1 mul + 1 add + (1 mul + 5 opss) * 2 = 14 ops
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Q #2: Number of operations via the variable elimination
algorithm

How many addition and multiplication operations do we need
to calculate the expression below?

P (B)
∑
e

P (e)
∑
a

P (a|B ∧ e)P (w|a)P (g|a)

(A) ≤ 10

(B) 11-20

(C) 21-40

(D) 41-60

(E) ≥ 61

→ Correct answer is (B) 11-20. 14 operations in total.
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Efficient Inference Algorithm

▶ To compute the posterior or prior distribution from a given
Bayesian Network.

▶ Different orders will lead to different complexity.

▶ 14 operations vs 47 operations.

▶ We prefer to choose the most efficient inference algorithm.
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Introducing the Variable Elimination Algorithm

▶ Performing probabilistic inference is challenging.

→ Computing the posterior distribution of one or more query
variables given some evidence is #NP. Estimate the posterior
probability in a Bayesian network within an absolute error is
already NP-hard. No general efficient implementation.

▶ Exact and approximate inferences.

→ Compute the probabilities exactly.
Naive approach: enumerate all the worlds consistent with the
evidence. Do better below.

▶ The variable elimination algorithm uses dynamic programming
and exploits the conditional independence.

→ Do the calculations once and save the results for later.

Factors and operations.
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Introducing the Variable Elimination Algorithm

▶ High-Level Idea: Reuse intermediate computation and exploits
the conditional independence present in the Bayesian Network.

▶ Define Factors.

▶ Restrict Factors to reflect the evidence.

▶ Multiply factors with shared variables.

▶ Sum out hidden variables.

▶ Normalize to obtain probability.
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Factors
▶ A function from some random variables to a number.

▶ f(X1, . . . , Xj): a factor f on variables X1, . . . , Xj .

▶ A factor can represent a joint or a conditional distribution.
For example, f(X1, X2) can represent
P (X1 ∧X2), P (X1|X2) or P (X1 ∧X3 = v3|X2).

▶ Define a factor for every conditional probability distribution
in the Bayes net.

→ Every conditional probability distribution in the Bayes net
is a factor.

f(B), f(E), f(A,B,E), f(R,E), f(W,A), f(G,A)

P (B), P (E), P (A|B ∧ E), P (R|E), P (W |A), P (G|A)

P (B ∧ w ∧ g)

= P (B)
∑
a

P (w|a)P (g|a)
∑
e

P (e)P (a|B ∧ e)
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Restrict a variable

▶ To eliminate hidden variables, we need to find all factors
containing the variable.

▶ We want to restrict the factor to the case where X1 = v1.

▶ This operation produces a new factor which only contains the
variables without being restricted.
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Restrict a factor

Restrict a factor.

▶ Assign each evidence variable to its observed value.

▶ Restricting f(X1, X2, . . . , Xj) to X1 = v1,
produces a new factor f(X1= v1, X2, . . . , Xj) on X2, . . . , Xj .

▶ f(X1= v1, X2= v2, . . . , Xj = vj) is a number.

→ Restrict f(W,A) to W = t. Restrict f(G,A) to G = t.

P (B ∧ w ∧ g)

= P (B)
∑
a

P (w|a)P (g|a)
∑
e

P (e)P (a|B ∧ e)
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Restrict a factor

f1(X,Y, Z):

X Y Z val

t t t 0.1
t t f 0.9
t f t 0.2
t f f 0.8
f t t 0.4
f t f 0.6
f f t 0.3
f f f 0.7

→

f2(Y,Z):

Y Z val

t t 0.1
t f 0.9
f t 0.2
f f 0.8

f3(Y ):

Y val

t 0.9
f 0.8

f4() = 0.8

▶ What is f2(Y,Z) = f1(x, Y, Z)?

▶ What is f3(Y ) = f2(Y,¬z)?

▶ What is f4() = f3(¬y)?
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Sum out a variable

▶ To eliminate hidden variables, we need to find all factors
containing the variable.

▶ Multiply the factors together, and sum out the variable from
the product.

▶ The sum out operation is similar to the sum rule of probability.

▶ The rule will derive a new factor without the sum-out variable.
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Sum out a variable

Sum out a variable.

Summing out X1 with domain {v1, . . . , vk} from factor
f(X1, . . . , Xj), produces a factor on X2, . . . , Xj defined by:

(
∑
X1

f)(X2, . . . , Xj) = f(X1= v1, . . . , Xj) + · · ·+ f(X1= vk, . . . , Xj)

→ Sum out a and e.

P (B ∧ w ∧ g)

= P (B)
∑
a

P (w|a)P (g|a)
∑
e

P (e)P (a|B ∧ e)

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen22 / 56



Sum out a variable

f1(X,Y, Z):
X Y Z val

t t t 0.03
t t f 0.07
t f t 0.54
t f f 0.36
f t t 0.06
f t f 0.14
f f t 0.48
f f f 0.32

→ f2(X,Z):

X Z val

t t 0.57
t f 0.43
f t 0.54
f f 0.46

What is f2(X,Z) =
∑

Y f1(X,Y, Z)?
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Multiplying factors

▶ To eliminate hidden variables, we need to find all factors
containing the variable.

▶ Multiply the factors together, and sum out the variable from
the product.

▶ Multiplication is the first step of the procedure.

▶ The new factor is a union of the two sets.
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Multiplying factors

Multiply two factors together.

The product of factors f1(X,Y ) and f2(Y, Z), where Y are the
variables in common, is the factor (f1 × f2)(X,Y, Z) defined by:

(f1 × f2)(X,Y, Z) = f1(X,Y ) ∗ f2(Y, Z).

→

P (B ∧ w ∧ g)

= P (B)
∑
a

P (w|a)P (g|a)
∑
e

P (e)P (a|B ∧ e)
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Multiplying factors

f1:

X Y val

t t 0.1
t f 0.9
f t 0.2
f f 0.8

f2:

Y Z val

t t 0.3
t f 0.7
f t 0.6
f f 0.4

→ f1 × f2:

X Y Z val

t t t 0.03
t t f 0.07
t f t 0.54
t f f 0.36
f t t 0.06
f t f 0.14
f f t 0.48
f f f 0.32

What is f1(X,Y )× f2(Y,Z)?
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Normalize a factor

▶ The purpose of normalization is to convert some numbers into
a valid probability distribution

▶ Normalize is the last step of the variable elimination algorithm

▶ After normalizing the values, they will sum to 1 and represent
valid probabilities
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Normalize a factor

▶ Convert it to a probability distribution.

▶ Divide each value by the sum of all the values.

f1:

Y val

t 0.2
f 0.6
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Variable elimination algorithm

To compute P (Xq|Xo1 = v1 ∧ . . . ∧Xoj = vj):

▶ Construct a factor for each conditional probability
distribution.

▶ Restrict the observed variables to their observed values.

▶ Eliminate each hidden variable Xhj
.

▶ Multiply all the factors that contain Xhj to get new factor gj .

▶ Sum out the variable Xhj from the factor gj .

▶ Multiply the remaining factors.

▶ Normalize the resulting factor.
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Example of VEA

Given a portion of the Holmes network below,
calculate P (B|¬a) using the variable elimination algorithm.

Eliminate the hidden variables in reverse alphabetical order.

P (B) = 0.3

P (E) = 0.1

P (A|E ∧B) = 0.8
P (A|E ∧ ¬B) = 0.2
P (A|¬E ∧B) = 0.7
P (A|¬E ∧ ¬B) = 0.1

P (W |A) = 0.8
P (W |¬A) = 0.4

E

B

A W
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Example of VEA

▶ B is the query variable, and A is the evidence variable.

▶ To calculate P (B|¬a), it suffices to compute the joint
distribution of P (B,¬a)

▶ Step 0: Define all the factors.

▶ Step 1: Restrict A = false.

▶ Step 2: Sum out E and W .

▶ Step 3: Multiply remaining factors.

▶ Step 4: Normalizing the resulting factor.
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More Efficiency

The joint distribution can be written as:

P (B ∧ ¬a) =
∑
e

∑
w

P (B)p(e)P (¬a|B ∧ e)P (w| ∧ ¬a)

Simplify this term:

P (B ∧ ¬a) = P (B)(
∑
e

p(e)P (¬a|B ∧ e))(
∑
w

P (w| ∧ ¬a))
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Define factors

P (B), P (E), P (A|B ∧ E), P (W |A)

→ f1(B), f2(E), f3(A,B,E), f4(W,A)

f1(B):
B val
t 0.3
f 0.7

f2(E):
E val
t 0.1
f 0.9

f3(A,B,E):
A B E val
t t t 0.8
t t f 0.7
t f t 0.2
t f f 0.1
f t t 0.2
f t f 0.3
f f t 0.8
f f f 0.9

f4(W,A):
W A val
t t 0.8
t f 0.4
f t 0.2
f f 0.6
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Restrict factors

f1(B), f2(E), f3(¬a,B,E), f4(W,¬a)

→ f1(B), f2(E), f5(B,E), f6(W )

f1(B):
B val
t 0.3
f 0.7

f2(E):
E val
t 0.1
f 0.9

f5(B,E):
B E val
t t 0.2
t f 0.3
f t 0.8
f f 0.9

f6(W ):
W val
t 0.4
f 0.6
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Sum out E and W

f1(B), f2(E), f5(B,E), f6(W )

→ f1(B), f2(E), f5(B,E), f7() = 1.0

f1(B):
B val
t 0.3
f 0.7

f2(E):
E val
t 0.1
f 0.9

f5(B,E):
B E val
t t 0.2
t f 0.3
f t 0.8
f f 0.9

f7():
val
1.0
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Sum out E and W

f1(B), f2(E), f5(B,E), f7() = 1.0

→ f1(B), f8(B,E), f7() = 1.0

f1(B):
B val
t 0.3
f 0.7

f8(B,E) = f5(B,E) × f2(E):
B E val
t t 0.2 * 0.1 = 0.02
t f 0.3 * 0.9 = 0.27
f t 0.8 * 0.1 = 0.08
f f 0.9 * 0.9 = 0.81

f7():
val
1.0
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Sum out E and W

f1(B), f8(B,E), f7() = 1.0

→ f1(B), f9(B), f7() = 1.0

f1(B):
B val
t 0.3
f 0.7

f9(B) =
∑

E f8(B,E):

B val
t 0.02 + 0.27 = 0.29
f 0.81 + 0.08 = 0.89

f7():
val
1.0
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Multiply all factors

f1(B), f9(B), f7() = 1.0

→ f10(B)

f10(B) = f9(B)× f1(B)× f7():
B val
t 0.29 * 0.3 = 0.087
f 0.89 * 0.7 = 0.623
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Normalization

Normalization for the factor:

p(B|¬a) = f10(B):
B val

t 0.087 / (0.087 + 0.623) = 0.1225
f 0.623 / (0.087 + 0.623) = 0.8775
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Effect of The Elimination Ordering

In general, VEA is exponential in space and time.

The complexity of VEA depends on:

▶ The size of the CPT in the Bayesian network.

▶ The size of the largest factor during algorithm execution.

Effect of the elimination ordering on algorithm complexity:

▶ Every order yields a valid algorithm.

▶ Different orderings yields different intermediate factors.
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Examples of Good and Bad Orderings

Suppose that we want to calculate P (G).
What factors do we produce if we

▶ Eliminate R → W → E → B → A?

▶ Eliminate A → B → E → R → W?

Which ordering leads to worse complexity for VEA?

E

B

R

A

G

W
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Examples of Good and Bad Orderings

Eliminate R → W → E → B → A?

f1(E), f2(E,R), f3(B), f4(E,B,A), f5(W,A), f6(G,A)

▶ f2(E,R) → f7(E): 1 * 2 = 2 ops

▶ f5(W,A) → f8(A): 1 * 2 = 2 ops

▶ f1(E)f7(E)f4(E,B,A) → f9(B,A): (4 + 1) * 4 = 20 ops

▶ f9(B,A)f8(A) → f10(A): (2 + 1) * 2 = 6 ops

▶ f10(A)f6(G,A) → f11(G): (2 + 1) * 2 = 6 ops

▶ Total: 36 ops including additions and multiplication
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Examples of Good and Bad Orderings

Eliminate A → B → E → R → W

f1(E), f2(E,R), f3(B), f4(E,B,A), f5(W,A), f6(G,A)

▶ f4(E,B,A)f5(W,A)f6(G,A) → f7(E,B,W,G): (4 + 1) *
16 = 80 ops

▶ f7(E,B,W,G)f3(B) → f8(E,W,G): (2 + 1) * 8 = 24 ops

▶ f1(E)f8(E,W,G)f2(E,R) → f9(W,G,R): (4 + 1) * 8 = 24
ops

▶ f9(W,G,R) → f10(W,G): 1 * 4 = 4 ops

▶ f10(W,G) → f11(G): 1 * 2 = 2 ops

▶ Total: 134 ops including additions and multiplication
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Hypergraph

▶ A generalization graph, which contains vertices and a set of
hyperedges. A hyperedge connects multiple vertices.

▶ A hyperedge is a clique of several vertices.

▶ A Bayesian Network can be seen as a hypergraph, where each
factor is basically a hyperedge.
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Elimination Width

▶ Given an ordering π of the variables and an initial hypergraph
H, eliminating these variables yields a sequence of
hypergraphs:

H → H0, H1, · · · , Hn

▶ where Hn contains only one vertex

▶ The elimination width is the maximum size of any hyperedge
in any of the hypergraphs H0, H1, · · · , Hn.

▶ The elimination width is 4 for the hypergraph f7(E,B,W,G).
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Elimination Width

▶ If the elimination width of an ordering π is k, then the
complexity of VE using that order is 2O(k)

▶ Elimination width k means that at some stage in the
elimination process, a factor involving k variables was
generated.

▶ That factor will require 2O(k) space to store.

▶ And it will require 2O(k) operations to process.

▶ The time and space complexity of VE are both exponential
w.r.t elimination width.
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Tree Width

▶ Given a hypergraph H with vertices {X1, X2, · · · , Xn} the
tree width of H is the MINIMUM elimination width of any
orderings π of these variables.

▶ Thus VE has best case complexity of 2O(ω) where ω is the
tree width of the initial Bayes Net.

▶ In the worst case the treewidth can be equal to the number of
variables.
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Tree Width

▶ VE complexity is exponential in the treewidth.

▶ Finding an ordering that has an elimination width equal to
treewidth is NP-hard.

▶ Heuristics are used to find good orderings with low elimination
widths.

▶ In practice, this can be very successful. Elimination widths
can be often relatively small, 8-10 even when the network has
1000s of variables.

▶ Thus VE can be much more efficient than simply summing up
the probability of all the possible events.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen49 / 56



Finding Good Orderings

▶ A polytree is a single-connected network in which there is at
most one undirected path between any two nodes.

▶ A node can have multiple parents, but they have no cycles.

▶ Good orderings are easy to find for polytrees.

▶ At each stage, eliminate a singly connected node.

▶ Because we have a polytree, we are assured that a singly
connected node will always exist.

▶ The size of the factors never increases.
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Finding Good Orderings

▶ Treewidth of the polytree is equal to the maximum number of
parents among all the nodes.

▶ Eliminating singly connected nodes allows VE to run the time
linear in size of the network.

▶ e.g. Eliminating D, A, C, X1, etc.

▶ Results: No factor ever larger than original CPTs.
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Learning Goals

Why Use the Variable Elimination Algorithm

The Variable Elimination Algorithm

Factors Affecting the Complexity of VEA

Approximate Inference

Revisiting Learning Goals
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Approximate Inference

We cannot make exact inferences in many cases where the graph is
too large. Instead, we use approximate inferences with sampling to
understand the distribution of different variables.

▶ Forward Sampling

▶ Rejection Sampling
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Forward Sampling

E

B

R

A

G

W

Estimating p(G):

▶ Loop for i in 1 · · ·n, do
▶ Sample ei ∼ P (E)

▶ Sample bi ∼ P (B)

▶ Sample ai ∼ P (A|E = e,B = b)

▶ Sample gi ∼ p(G|A = a)

▶ p(G = True) =
∑

i gi
n
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Rejection Sampling

E

B

R

A

G

W

Estimating p(G|¬b)

▶ Loop for i in 1 · · ·n, do
▶ Sample ei, bi, ai, gi as before.

▶ Reject bi = True, only take accepted g̃i.

▶ p(G = True) =
∑

i g̃i
ñ
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Revisiting Learning Goals

▶ Explain how we can perform probabilistic inference more
efficiently using the variable elimination algorithm.

▶ Define factors. Manipulate factors using operations restrict,
sum out, multiply and normalize.

▶ Describe/trace/implement the variable elimination algorithm
for calculating a prior or a posterior probability given a
Bayesian network.

▶ Explain how the elimination ordering affects the complexity of
the variable elimination algorithm.

▶ Know about approximate statistical inference.
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