Statistical Inference in
Bayesian Networks

Yuntian Deng

Lecture 9

Readings: RN 13.4. PM 8.4.
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Learning Goals

» Explain how we can perform probabilistic inference more
efficiently using the variable elimination algorithm.

» Define factors. Manipulate factors using operations restrict,
sum out, multiply and normalize.

» Describe/trace/implement the variable elimination algorithm
for calculating a prior or a posterior probability given a
Bayesian network.

» Explain how the elimination ordering affects the complexity of
the variable elimination algorithm.

> Know about approximate statistical inference.
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Why Use the Variable Elimination Algorithm
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A Bayesian Network for the Holmes Scenario

P(R|-E) = 0.0002
P(R| E)=0.9
P(E) = 0.0003 @ (| E)

(€) (W) | Pl 4 o

® ©) | el Hoi

P(B) = 0.0001

P(A|~B A —E) = 0.01
P(A|-BA E)=0.2

P(A| BA-E)=0.95
P(A| BA E)=0.96
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Answering a Question

What is the probability that a burglary is happening
given that Dr. Watson and Mrs. Gibbon both call?

P(Blw A g)

» Query variables: B
» Evidence variables: W and G

» Hidden variables: E, A, and R.

Notice the new notation: capital letters for random variables and lowercase

letters for values.
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Answering the query using the joint distribution

Evaluate P(B|w A g) in terms of known distributions from the
Bayesian network.
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Answering the query using the joint distribution

Evaluate P(B|w A g) in terms of known distributions from the
Bayesian network.

— Following the approach from Lecture 6:

P(BAwAg)
P(wAg)
P(BAwAg)
PbAwAg)+P(=bAwAg)
x P(BAwAg)

aZZZP(B/\e/\a/\w/\g/\r)
mZZZP P(a|B A e)P(wl|a)P(g|a)P(r|e)
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Q #1: Number of operations using the joint distribution

How many addition and multiplication operations do we need
to calculate the expression below?

ZZZP P(a| B A ¢)P(w|a)P(gla)P(r|e)

(A) <10
(B) 11-20
(C) 21-40
(D) 41-60
(E) > 61
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Q #1: Number of operations using the joint distribution

How many addition and multiplication operations do we need
to calculate the expression below?

ZZZP P(a| B A ¢)P(w|a)P(gla)P(r|e)

— Correct answer is (D). 47 operations.
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Is there any duplication?

» P(B) appears in every single term, but it doesn't involve any
of the three hidden variables.

» P(B) can be thought of as a constant number.

» If you pull P(B) outside of the summation, you decrease 8
multiplication to 1 multiplication

» Push summation to as right as possible.
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Answering the query using variable elimination algorithm

ZZZP P(a|B A e)P(w|a)P(gla)P(rle)

— We should move the summations as much to the right of the
expression as possible to reduce the overall # of operations.

= Z Z ZP P(a| B A e)P(w]a)P(gla)P(r|e)
ZP e ZP a|B A e)P(w|a)P(g|a) ZP(r\e)
B) ZP ZP a|B N e)P(w|a)P(g|a)
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Q #2: Number of operations via the variable elimination
algorithm

How many addition and multiplication operations do we need
to calculate the expression below?

B)ZP ZPCL|B/\€ (wla)P(g|a)

A
B
C
D

<10
11-20
21-40
41-60
> 61

—_ N~~~
S N N N N
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Q #2: Number of operations via the variable elimination
algorithm

How many addition and multiplication operations do we need
to calculate the expression below?

B)ZP ZPCL|B/\€ (wla)P(g|a)

— The inner term requires 1 add + 4 mul.
It requires 1 mul + 1 add + (1 mul + 5 opss) * 2 = 14 ops
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Q #2: Number of operations via the variable elimination
algorithm

How many addition and multiplication operations do we need
to calculate the expression below?

B)ZP ZPCL|B/\€ (w]a)P(gla)

(A) <10
(B) 11-20
(C) 21-40
(D) 41-60
(E) > 61
— Correct answer is (B) 11-20. 14 operations in total.
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Efficient Inference Algorithm

» To compute the posterior or prior distribution from a given
Bayesian Network.

» Different orders will lead to different complexity.
P 14 operations vs 47 operations.

> We prefer to choose the most efficient inference algorithm.
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The Variable Elimination Algorithm
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Introducing the Variable Elimination Algorithm
» Performing probabilistic inference is challenging.

— Computing the posterior distribution of one or more query
variables given some evidence is #NP. Estimate the posterior
probability in a Bayesian network within an absolute error is
already NP-hard. No general efficient implementation.

» Exact and approximate inferences.

— Compute the probabilities exactly.
Naive approach: enumerate all the worlds consistent with the
evidence. Do better below.

» The variable elimination algorithm uses dynamic programming
and exploits the conditional independence.

— Do the calculations once and save the results for later.

Factors and operations.

CS 486/686: Intro to AlLecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chenl5 / 56



Introducing the Variable Elimination Algorithm

» High-Level Idea: Reuse intermediate computation and exploits
the conditional independence present in the Bayesian Network.

Define Factors.
Restrict Factors to reflect the evidence.
Multiply factors with shared variables.

Sum out hidden variables.

vV v.v. v Y

Normalize to obtain probability.
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Factors

» A function from some random variables to a number.
» f(X1,...,X;): afactor f on variables X,..., X;.

> A factor can represent a joint or a conditional distribution.
For example, f(X1, X2) can represent
P(Xl A XQ), P(X1|X2) or P(Xl N X3 = 2}3’X2).

» Define a factor for every conditional probability distribution
in the Bayes net.

— Every conditional probability distribution in the Bayes net
is a factor.

f(B), f(E), (A, B, E), (R, E), f(W, A), (G, A)
P(B),P(E),P(A|B A E), P(R|E), P(W|A), P(G|A)

P(BAwAg)
= P(B) Y _ P(w|a)P(gla) > P(e)P(a|B Ae)

a €
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Restrict a variable

» To eliminate hidden variables, we need to find all factors
containing the variable.

» We want to restrict the factor to the case where X7 = v;.

» This operation produces a new factor which only contains the
variables without being restricted.
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Restrict a factor

Restrict a factor.
P Assign each evidence variable to its observed value.

> Restricting f(Xl,XQ, R ,Xj) to X7 = 11,
produces a new factor f(X; =wv1,Xo,...,X;) on Xo,..., X;.

> f(X1=v1,Xo=u19,...,X;=uv;) is a number.

— Restrict f(W, A) to W = t. Restrict f(G,A) to G =t.

P(BAwAg)

B)ZP(w|a) (gla) ZP P(a|B Ne)
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Restrict a factor

Y Z | val
X Y Z | val t t |01
t t t |01 LY, Z)]t f |09
t t f [09 f t |02
t f t |02 f f |08
AXY,Z)t f f |08 —

R Y | val
]t ; i 82 f3(Y)t |09
' f 0.8

f f f |07
f1() = 0.8

> What is f»(Y, Z) = fi(z,Y, Z)?
> What is f3(Y) = fo(Y, —2)?
» What is f4() = f3(—y)?
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Sum out a variable

» To eliminate hidden variables, we need to find all factors
containing the variable.

» Multiply the factors together, and sum out the variable from
the product.

» The sum out operation is similar to the sum rule of probability.

» The rule will derive a new factor without the sum-out variable.
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Sum out a variable

Sum out a variable.

Summing out X; with domain {vy,...,v;} from factor
f(X1,...,X;), produces a factor on X»,..., X; defined by:

Zf (Xo,.. s X)) = f(X1=v1,..., X))+ + f(X1=vp,..., X;)

— Sum out a and e.

P(BAwAg)

B) Y P(wl|a)P(gla) ZP P(a|B Ae)
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Sum out a variable

f1(X,Y, 2):

X Y Z] val

t t t [0.03

t t f |0.07 X Z val
t f t 054 t t | 057
t f f |036 — f(X,2): |t f 043
f t t |0.06 f t | 054
f t f |014 f f 046
f f t |048

f f f 032

What is fo(X, Z) =3y f1(X,Y, Z)?
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Multiplying factors

» To eliminate hidden variables, we need to find all factors
containing the variable.

» Multiply the factors together, and sum out the variable from
the product.

» Multiplication is the first step of the procedure.

» The new factor is a union of the two sets.
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Multiplying factors
Multiply two factors together.
The product of factors f1(X,Y) and f2(Y, Z), where Y are the

variables in common, is the factor (f1 x f2)(X,Y, Z) defined by:

(fi x 2)(X,Y,2) = f1(X,Y) * fo(Y, Z).

P(BAwAg)

B)ZP(w\a) (g]a) ZP P(a|B Ae)
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Multiplying factors

X Y | val
t t |01 X Y Z val
firlt £ ]09 t t t |0.03
f t |02 t t f |0.07
f f |08 t f t | 054
= fix for| t f f 0.36
Y Z | val f t t |0.06
t t |03 f t f |014
for |t f |07 f f t |048
f t |06 f f f 1032

f f |04

What is fl(X, Y) X fz(Yv, Z)?
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Normalize a factor

» The purpose of normalization is to convert some numbers into
a valid probability distribution

> Normalize is the last step of the variable elimination algorithm

> After normalizing the values, they will sum to 1 and represent
valid probabilities
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Normalize a factor

» Convert it to a probability distribution.

» Divide each value by the sum of all the values.

Y | val
fii |t 0.2
f 106
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Variable elimination algorithm

To compute P(Xy| X, =v1 A ... A Xp, =v5):

» Construct a factor for each conditional probability
distribution.

> Restrict the observed variables to their observed values.
» Eliminate each hidden variable th.
> Multiply all the factors that contain Xj,; to get new factor g;.

> Sum out the variable Xj,; from the factor g;.
» Multiply the remaining factors.

» Normalize the resulting factor.
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Example of VEA

Given a portion of the Holmes network below,
calculate P(B|—a) using the variable elimination algorithm.

Eliminate the hidden variables in reverse alphabetical order.

P(W|A) =0.8

P(E) =01 P(W|-A) = 0.4

P(AIEAB) =038
- P(A|E A -B) = 0.2
P(B)=03 P(A|~E A B) = 0.7
P(A|—\E' A —|B) =0.1
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Example of VEA

> B is the query variable, and A is the evidence variable.

» To calculate P(B|—a), it suffices to compute the joint
distribution of P(B,—a)

Step 0: Define all the factors.
Step 1: Restrict A = false.
Step 2: Sum out E and W.

Step 3: Multiply remaining factors.

vV v.v. v Y

Step 4: Normalizing the resulting factor.
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More Efficiency

The joint distribution can be written as:

P(B A —a) ZZP P(—a|B A e)P(w| A —a)

Simplify this term:

P(BA=a) = P(B)(Y_ p(e)P(=a| B Ae)(Y_ Plw| A-a))

e
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Define factors

P(B), P(E), P(A|B A E), P(W|A)
_>fl(B)vfQ(E)af?)(AaB)E)afll( )
f1(B): f5(A, B, B): f1(W, A):
B | val A B FE | val W A | val
t 0.3 t t t |08 t t | 0.8
f 0.7 t t f 107 t f |04
) t f t 0.2 f t | 0.2
sz(’E) t f f |01 f f | 06
val
f t t |02
t 0.1
. 0.9 f t f 103
- f f t 1038
f f f |09
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Restrict factors

N1(B), fa(E), f3(=a, B, E), fa(W, —a)

— f1(B), fa(E), f5(B, E), fe(W)
f1(B): J5(B, E): fe(W):
B | val B E | val W | val
t 0.3 t t | 0.2 t 0.4
f 0.7 t f |03 f | 0.6
f t | 0.8
f2(E):
2E val f f]09
t 0.1
f 0.9
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Sum out E and W

f1(B): f5(B, E): f20):
B | val B E | val val
t 0.3 t t |02 1.0
f 0.7 t f |03

f t]0.38

E | val .
t 0.1
f 0.9
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Sum out E and W

f1(B), fa(E), fs(B,E), f-() = 1.0
- fl(B)7f8(BaE)af7() =1.0

fl(B)Z fg(B,E) = f5(B,E) X fQ(E) f7():
B | val B FE val val
t 0.3 t t|02%*0.1=0.02 1.0
f | 07 t f |03*%09=027
f t |08*0.1=0.08
f f|09*09=0381
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Sum out E and W

f1(B), fs(B, E), f() = 1.0
— fl(B)vfg(B)af7() =10

f1(B): fo(B) = > fs(B, E): f70):
B | val B val val
t |03 t | 0.02 4+ 0.27 = 0.29 1.0
f |07 f | 0.81 + 0.08 =0.89
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Multiply all factors

f1(B), fo(B), fz() = 1.0
— f10(B)

f10(B) = fo(B) x f1(B) x f7():
B val

t

f

0.29 * 0.3 = 0.087
0.89 * 0.7 = 0.623
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Normalization

Normalization for the factor:

p(Bl-a) = fi0(B):
B val
t | 0.087 / (0.087 + 0.623) = 0.1225
f | 0.623 / (0.087 + 0.623) = 0.8775
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Factors Affecting the Complexity of VEA
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Effect of The Elimination Ordering

In general, VEA is exponential in space and time.
The complexity of VEA depends on:
» The size of the CPT in the Bayesian network.

» The size of the largest factor during algorithm execution.

Effect of the elimination ordering on algorithm complexity:
» Every order yields a valid algorithm.

» Different orderings yields different intermediate factors.

CS 486/686: Intro to AlLecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen4l / 56



Examples of Good and Bad Orderings

Suppose that we want to calculate P(G).
What factors do we produce if we

» Eliminate R - W — F —- B = A?
» Eliminate A—+B —+F — R —> W7

Which ordering leads to worse complexity for VEA?
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Examples of Good and Bad Orderings

Eliminate R =W — F —- B — A?

fl(E)vf2(E7R)7f3(B)7f4(E7B7A)7f5(VVa A)af6(G7A)
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Examples of Good and Bad Orderings

Eliminate R =W — F —- B — A?

N(E), f2(E, R), f3(B), f4(E, B, A), fs(W, A), f6(G, A)
> f2(E,R) = f7(E): 1*2=2ops
> f5s(W,A) = fs(A): 1*2=2ops
> f1(E)f7(E)fa(E, B, A) = fo(B,A): (4 + 1) * 4 =20 ops
> fo(B,A)fs(A) = fio(A): (2+ 1) *2=6ops
> f10(A)f6(G, A) = f11(G): (2+ 1) *2 =6 ops

P Total: 36 ops including additions and multiplication
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Examples of Good and Bad Orderings

Eliminate A+ B - FE - R —> W

F(E), F2(E, R), £5(B), f1(E, B, A), f5(W, A), fs(G, A)
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Examples of Good and Bad Orderings

Eliminate A+ B - FE - R —> W

F(E), F2(E, R), £5(B), f1(E, B, A), f5(W, A), fs(G, A)

> fu(E,B,A)fs(W,A) fs(G,A) — fr(E,B,W,G): (4+1)*
16 = 80 ops

> f7(E,B,W,G)f3(B) = fs(E,W,G): (2+ 1) * 8 = 24 ops

> [(E)S(E,W,G)f2(E,R) = fo(W,G,R): (4+1)*8=24
ops

> fo(W,G,R) — fio(W,G): 1* 4 =4 ops
> fio(W,G) = f11(G): 1 *2 =2 ops

> Total: 134 ops including additions and multiplication
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Hypergraph

> A generalization graph, which contains vertices and a set of
hyperedges. A hyperedge connects multiple vertices.

> A hyperedge is a clique of several vertices.

> A Bayesian Network can be seen as a hypergraph, where each
factor is basically a hyperedge.
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Elimination Width

» Given an ordering 7 of the variables and an initial hypergraph
‘H, eliminating these variables yields a sequence of
hypergraphs:

H — Ho,Hy,--- ,Hy

» where H,, contains only one vertex

» The elimination width is the maximum size of any hyperedge
in any of the hypergraphs Hy, Hy,--- , H,.

» The elimination width is 4 for the hypergraph f7(E, B, W, G).
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Elimination Width

» If the elimination width of an ordering 7 is k, then the
complexity of VE using that order is 20(%)

P Elimination width k means that at some stage in the
elimination process, a factor involving k variables was
generated.

» That factor will require 29(%) space to store.
» And it will require 20() operations to process.

» The time and space complexity of VE are both exponential
w.r.t elimination width.
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Tree Width

» Given a hypergraph H with vertices { X7, Xo,---, X, } the
tree width of #H is the MINIMUM elimination width of any
orderings 7 of these variables.

» Thus VE has best case complexity of 20() where w is the
tree width of the initial Bayes Net.

» In the worst case the treewidth can be equal to the number of
variables.
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Tree Width

> VE complexity is exponential in the treewidth.

» Finding an ordering that has an elimination width equal to
treewidth is NP-hard.

» Heuristics are used to find good orderings with low elimination
widths.

» In practice, this can be very successful. Elimination widths
can be often relatively small, 8-10 even when the network has
1000s of variables.

» Thus VE can be much more efficient than simply summing up
the probability of all the possible events.
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Finding Good Orderings

> A polytree is a single-connected network in which there is at
most one undirected path between any two nodes.

> A node can have multiple parents, but they have no cycles.
» Good orderings are easy to find for polytrees.
» At each stage, eliminate a singly connected node.

» Because we have a polytree, we are assured that a singly
connected node will always exist.

» The size of the factors never increases.
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Finding Good Orderings
® ©
o /
ﬂ\\
@ @o oo @

» Treewidth of the polytree is equal to the maximum number of
parents among all the nodes.

» Eliminating singly connected nodes allows VE to run the time
linear in size of the network.

» e.g. Eliminating D, A, C, X1, etc.

» Results: No factor ever larger than original CPTs.
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Approximate Inference
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Approximate Inference

We cannot make exact inferences in many cases where the graph is
too large. Instead, we use approximate inferences with sampling to
understand the distribution of different variables.

» Forward Sampling

» Rejection Sampling
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Forward Sampling

Estimating p(G):

» Loop foriinl---n, do
»> Sample ¢; ~ P(E)
» Sample b; ~ P(B)
» Sample a; ~ P(A|E =¢,B =b)
» Sample g; ~ p(G|A = a)

> p(G =True) = —Z;’Lgi
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Rejection Sampling

Estimating p(G|—b)

» Loop foriinl---n,do
» Sample e;, b;, a;, g; as before.

» Reject b; = True, only take accepted g;.

» p(G =True) = 2.0

n
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Revisiting Learning Goals

» Explain how we can perform probabilistic inference more
efficiently using the variable elimination algorithm.

» Define factors. Manipulate factors using operations restrict,
sum out, multiply and normalize.

» Describe/trace/implement the variable elimination algorithm
for calculating a prior or a posterior probability given a
Bayesian network.

» Explain how the elimination ordering affects the complexity of
the variable elimination algorithm.

> Know about approximate statistical inference.
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