Independence and Bayesian Networks (Part 2)

Yuntian Deng

Lecture 8

Readings: RN 13.2. PM 8.3.

CS 486/686: Intro to AI Lecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 1 / 56

Outline

Learning Goals

D-Separation

Constructing Bayesian Networks

Causality

Revisiting Learning Goals

CS 486/686: Intro to AI Lecturer: Yuntian Deng S

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 2 / 56

Learning Goals

- Determine whether an independence relationship holds by applying d-separation.
- Given a Bayesian network and an order of the variables, construct a Bayesian network that correctly represents the independence relationships among the variables.
- Understand the difference between correlation and causality.

Learning Goals

D-Separation

Constructing Bayesian Networks

Causality

Revisiting Learning Goals

CS 486/686: Intro to AI Lecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 4 / 56

D-Separation

Are two variables X and Y independent given the set of observed variables E?

Definition (D-Separation)

E d-separates X and Yiff E blocks every un-directed path between X and Y.

If E d-separates X and Y, then X and Y are conditionally independent given E.

D-Separation

- ▶ Un-directed paths between X and Y.
- Multiple paths need to be considered if they exist.
- One of the nodes on all the paths blocking the connection.

CS 486/686: Intro to AI Lecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 6 / 56

Blocked Path - Scenario 1/3

If N is observed, then it blocks the path between X and Y.

CS 486/686: Intro to Al Lecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 7 / 56

D-Separation (Scenario 1/3)

B blocks the path between X and Y, which follows scenario 1.

CS 486/686: Intro to AI Lecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 8 / 56

Blocked Path - Scenario 2/3

If N is observed, then it blocks the path between X and Y.

CS 486/686: Intro to AI Lecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 9 / 56

D-Separation (Rule 2)

▶ A blocks the path between X and Y, which follows scenario 2.

CS 486/686: Intro to AILecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen10 / 56

Blocked Path - Scenario 3/3

If N and N's descendants are NOT observed, then they block the path between X and Y.

CS 486/686: Intro to AlLecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen11 / 56

D-Separation (Rule 3)

- E blocks the path between X and Y, which follows scenario 3.
- \blacktriangleright If E is not observed, then X and Y are d-separated.

CS 486/686: Intro to AlLecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen12 / 56

Q #1: Are TravelSubway and HighTemp independent?

CS 486/686: Intro to AlLecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen13 / 56

Q #1: Are TravelSubway and HighTemp independent?

- A path from TravelSubway to Flu to Fever to HighTemp.
- Two nodes on the path: Flu and Fever.
- Apply rule 1 to Flu, Flu is not observed, no blocking

Apply rule 1 to Fever, Fever is not observed, no blocking
CS 486/686: Intro to AILecturer: Yuntian Deng
Slides: Alice Gao / Blake Vanberlo / Wenhu Chen13 / 56

Q #1: Are TravelSubway and HighTemp independent?

 \rightarrow No, they not independent.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen14 / 56

Q #2: Are TravelSubway and HighTemp independent given Flu?

Q #2: Are TravelSubway and HighTemp independent given Flu?

- A path from TravelSubway to Flu to Fever to HighTemp.
- Flu and Fever are the nodes on the path.
- Apply rule 1 to Fever, Fever is not observed, no blocking.
- Apply rule 1 to Flu, Flu is observed, the path is blocked.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen15 / 56

Q #2: Are TravelSubway and HighTemp independent given Flu?

 \rightarrow Yes, they are independent given Fever

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen16 / 56

Q #3: Are Aches and HighTemp independent?

CS 486/686: Intro to AlLecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen17 / 56

Q #3: Are Aches and HighTemp independent?

One path from Aches to Flu to Fever to High Temp

- Apply Rule 1 to Fever, Fever is not observed, no blocking
- Apply Rule 2 to Flu, Flu is not observed, no blocking

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen17 / 56

Q #3: Are Aches and HighTemp independent?

 \rightarrow No, they are not independent.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen18 / 56

Q #4: Are Aches and HighTemp independent given Flu?

CS 486/686: Intro to AlLecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen19 / 56

Q #4: Are Aches and HighTemp independent given Flu?

One path from Aches to Flu to Fever to High Temp.

- Apply Rule 1 to Fever, Fever is not observed, no blocking.
- Apply Rule 2 to Flu, Flu is observed, and the path is blocked.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen19 / 56

Q #4: Are Aches and HighTemp independent given Flu?

 \rightarrow Yes, they are independent given Flu.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen20 / 56

Q #5: Are Flu and ExoticTrip independent?

CS 486/686: Intro to AlLecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen21 / 56

Q #5: Are Flu and ExoticTrip independent?

- One path from Flu to Fever to Malaria to ExoticTrip.
- Apply rule 1 to Malaria, which is not observed, not blocking.
- Apply rule 3 to Fever, itself and descendent are not observed, the path is being blocked.

CS 486/686: Intro to AlLecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen21 / 56

Q #5: Are **Flu** and **ExoticTrip** independent?

 \rightarrow Yes, they are indepent.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen22 / 56

Q #6: Are Flu and ExoticTrip independent given HighTemp?

CS 486/686: Intro to AlLecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen23 / 56

Q #6: Are Flu and ExoticTrip independent given HighTemp?

- One path from Aches to Flu to Fever to High Temp.
- Apply rule 1 to Fever, Fever is not observed, no blocking.
- Apply rule 3 to Fever, its descendent is observed, the path is not being blocked.

CS 486/686: Intro to AILecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen23 / 56

Q #6: Are Flu and ExoticTrip independent given HighTemp?

 \rightarrow They are not independent given HighTemp.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen24 / 56

Learning Goals

D-Separation

Constructing Bayesian Networks

Causality

Revisiting Learning Goals

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen25 / 56

Constructing Bayesian Networks

- For a joint probability distribution, there are many correct Bayesian networks.
- Given a Bayesian network A, a Bayesian network B is correct if and only if the following is true:

If Bayesian network B requires two variables to satisfy an independence relationship, Bayesian network A must also require the two variables to satisfy the same independence relationship.

- Bayesian network B could miss independence from Network A, but it cannot miss dependence.
- ▶ We prefer a Bayesian network that requires fewer probabilities.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen26 / 56

Constructing a Correct Bayesian Network

- 1. Order the variables $\{X_1, \ldots, X_n\}$.
- 2. For each variable X_i in the ordering,

2.1 Choose the node's parents:

Choose the smallest set of parents from $\{X_1, \ldots, X_{i-1}\}$ such that given $Parents(X_i)$, X_i is independent of all the nodes in $\{X_1, \ldots, X_{i-1}\} - Parents(X_i)$. Formally,

$$P(X_i | Parents(X_i)) = P(X_i | X_{i-1} \land \dots \land X_1).$$

- 2.2 Create a link from each parent of X_i to the node X_i .
- 2.3 Write down the conditional probability table $P(X_i | Parents(X_i))$.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen27 / 56

Consider the Bayesian network.

Construct a correct Bayesian network by adding the variables in the order: W, A, and B.

Consider the Bayesian network.

Construct a correct Bayesian network by adding the variables in the order: W, A, and B.

Set: $\{\}$

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen29 / 56

Consider the Bayesian network.

Construct a correct Bayesian network by adding the variables in the order: W, A, and B.

Set: $\{W\}$

► Is A dependent on W?

CS 486/686: Intro to AlLecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen30 / 56

Consider the Bayesian network.

Construct a correct Bayesian network by adding the variables in the order: W, A, and B.

Set: $\{W, \; A\}$

- ► Is B independent from A given W?
- Is B independent from W given A?

CS 486/686: Intro to AlLecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen31 / 56

Consider the Bayesian network.

Construct a correct Bayesian network by adding the variables in the order: A, W, and B.

Set: $\{\}$

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen32 / 56

Consider the Bayesian network.

Construct a correct Bayesian network by adding the variables in the order: A, W, and B.

Set: $\{A\}$

▶ is W dependent on A?

CS 486/686: Intro to AlLecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen33 / 56

Consider the Bayesian network.

Construct a correct Bayesian network by adding the variables in the order: A, W, and B.

Set: {A, W}

- ► B is independent from A given W?
- B is independent from W given A?

CS 486/686: Intro to AlLecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen34 / 56

Consider the Bayesian network:

Construct a correct Bayesian network by adding the variables in the order: W, G, and A.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen35 / 56

Consider the Bayesian network:

Set: $\{\}$

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen36 / 56

Consider the Bayesian network:

Set: $\{W\}$

► Is G dependent on W?

CS 486/686: Intro to AlLecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen37 / 56

Consider the Bayesian network:

- ► Is A independent on G given W?
- ► Is A independent on W given G?

Set: $\{W, G\}$

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen38 / 56

Consider the Bayesian network.

Construct a correct Bayesian network by adding the variables in the order: A, B, and E.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen39 / 56

Consider the Bayesian network.

set: {}

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen40 / 56

Consider the Bayesian network.

▶ Is B dependent on A?

CS 486/686: Intro to AlLecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen41 / 56

Consider the Bayesian network.

set: {A, B}

► Is E independent on A given B?

Is E independent on B given A?

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen42 / 56

Construct a new Bayesian network from the Holmes scenario, using the following order for adding variables: G, W, E, B, A, R.

CS 486/686: Intro to AlLecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen43 / 56

CS 486/686: Intro to AlLecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen44 / 56

CS 486/686: Intro to AlLecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen45 / 56

CS 486/686: Intro to AlLecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen46 / 56

CS 486/686: Intro to AILecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen47 / 56

CS 486/686: Intro to AlLecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen48 / 56

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen49 / 56

- Gibbon and Watson can both cause Earthquake.
- Gibbon and Watson and Earthquake can cause Burglary.
- Number of probabilities: 1 + 2 + 4 + 8 + 16 + 2 = 33.
- Previous, we only need 12 probabilities.

What is the correct order of correct Reconstruction

CS 486/686: Intro to AlLecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen51 / 56

What is the correct order of correct Reconstruction

- Correct Order: E, R, B, A, W, G, Let's validate it!
- Finding the most compact Bayesian Network is NP-hard!

CS 486/686: Intro to AlLecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen51 / 56

Constructing a Compact Bayesian Network

What does an edge mean? Does an edge always represent a causal relationship?

 \rightarrow An edge indicates an associational relationship that is not necessarily causal.

How can we construct a Bayesian network with the smallest number of edges?

 \rightarrow Cause precedes effect. So add causes first, then effects.

Are Correlation and Causation the same?

Why are these two factors so highly correlated?

CS 486/686: Intro to AILecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen53 / 56

Causality vs Correlation

- There is a confounding variable 'Age', which we did not take into account.
- The hidden variable confounds the relationship between Shoe Size and Reading.
- Randomized Experiments (Causal Intervention).

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen54 / 56

Causal Intervention

- ▶ Intervention: p(R|do(Shoe) = 1) p(R|do(Shoe) = 0).
- Average Treatment Effect: $ATE = \sum_{A} p(R|S = 1, A)p(A) - \sum_{A} p(R|S = 0, A)p(A)$
- $ATE \approx 0$, which means no causal relation.

Reference: https://www.bradyneal.com/slides/1%20-%20A% 20Brief%20Introduction%20to%20Causal%20Inference.pdf

CS 486/686: Intro to AlLecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen55 / 56

Revisiting Learning Goals

- Determine whether an independence relationship holds by applying d-separation.
- Given a Bayesian network and an order of the variables, construct a Bayesian network that correctly represents the independence relationships among the variables.
- Understand the difference between correlation and causality.