
Independence and Bayesian Networks
(Part 1)

Yuntian Deng

Lecture 7

Readings: RN 12.4, 13.1, & 13.2. PM 8.2 & 8.3.
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Learning Goals

▶ Given a probabilistic model,
determine if two variables are unconditionally independent, or
conditionally independent given a third variable.

▶ Give examples of deriving a compact representation of a joint
distribution by using independence assumptions.

▶ Describe components of a Bayesian network.

▶ Compute a joint probability given a Bayesian network.

▶ Explain the independence relationships in the three key
structures.
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(Unconditional) Independence

Definition ((unconditional) independence)

X and Y are (unconditionally) independent iff

P (X|Y ) = P (X)

P (Y |X) = P (Y )

P (X ∧ Y ) = P (X)P (Y )

Learning Y does NOT influence your belief about X.

→ Convert between the two equations.

To specify joint probability, it is sufficient to specify the individual
probabilities.
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P (Y |X) = P (Y )

P (X ∧ Y ) = P (X)P (Y )

Learning Y does NOT influence your belief about X.

→ To justify that

P (X ∧ Y ) = P (X)P (Y )

we need to make four comparisons.
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Conditional Independence

Definition (conditional independence)

X and Y are conditionally independent given Z if

P (X|Y ∧ Z) = P (X|Z).

P (Y |X ∧ Z) = P (Y |Z).

P (Y ∧X|Z) = P (Y |Z)P (X|Z).

Learning Y does NOT influence your belief about X
if you already know Z.

→ X is conditionally independent of Y given Z.

Independence does not imply conditional independence, and vice
versa.
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Q #1: Deriving a compact representation

Q: Consider a model with three random variables, A,B,C. What
is the minimum number of probabilities required to specify the
joint distribution?

(A) 3

(B) 7

(C) 8

(D) 16

→ (C) P (A), P (B|A), P (C|A ∧B). 1 + 2 + 4 = 7 probabilities

Draw a graph to prove it to yourself.
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Q #2: Deriving a compact representation

Q: Consider a model with three random variables, A,B,C.
Assume that A, B, and C are independent. What is the minimum
number of probabilities required to specify the joint distribution?

(A) 3

(B) 7

(C) 8

(D) 16

→ (A) P (A), P (B), P (C). 1 + 1 + 1 = 3 probabilities

Draw a graph to prove it to yourself.
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Q #3: Deriving a compact representation

Q: Consider a model with three boolean random variables,
A,B,C. Assume that A and B are conditionally independent
given C. What is the minimum number of probabilities required to
specify the joint distribution?

(A) 4

(B) 5

(C) 7

(D) 11

→ (B) P (C), P (A|C), P (B|C). 1 + 2 + 2 = 5 probabilities

Draw a graph to prove it to yourself.
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Q #3a: Deriving a compact representation

Q: Given the joint probability distribution about A, B, and C, how
many comparisons do we need to make to justify A and B are
independent given C?

(A) 1

(B) 4

(C) 8

(D) 10

→ (C)
p(B = T,A = T |C = T ) = p(B = T |A = T ) ∗ p(C = T |C = T )
p(B = T,A = F |C = T ) = p(B = T |C = T ) ∗ p(B = F |C = T )
... A total of 8 eqaulities!
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Q #3b: Deriving a compact representation

Q: Read the table to understand whether B and C are
independent given A.

A B C Prob
T T T 0.16
T T F 0.16
T F T 0.24
T F F 0.24
F T T 0.012
F T F 0.008
F F T 0.108
F F F 0.072

(A) B and C are independent given A

(B) B and C are not independent given A
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Q #3b: Deriving a compact representation

Read the table to understand whether B and C are independent
given A.

A B C Prob
T T T 0.16
T T F 0.16
T F T 0.24
T F F 0.24
F T T 0.012
F T F 0.008
F F T 0.108
F F F 0.072

▶ Compute p(B,C|A)

▶ Compute p(B|A) and p(C|A)

▶ Verify p(B,C|A) = p(B|A) ∗ p(C|A)
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Q #3b: Step-by-Step Derivation p(B,C|A)

A B C Prob
T T T 0.16
T T F 0.16
T F T 0.24
T F F 0.24
F T T 0.012
F T F 0.008
F F T 0.108
F F F 0.072

Table: Merging p(A,B,C).

▶ p(B,C|A) = p(B,C,A)/p(A)

▶ p(A) = (0.16 + 0.16 + 0.24 + 0.24, 0.012 + 0.008 + 0.108 +
0.072) = (0.8, 0.2)
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Q #3b: Step-by-Step Derivation p(B,C|A)

B C (A) Prob
T T T 0.16 / 0.8 = 0.2
T F T 0.16 / 0.8 = 0.2
F T T 0.24 / 0.8 = 0.3
F F T 0.24 / 0.8 = 0.3
T T F 0.012 / 0.2 = 0.06
T F F 0.008 / 0.2 = 0.04
F T F 0.108 / 0.2 = 0.54
F F F 0.072 / 0.2 = 0.36

Table: Computing p(B,C|A).

▶ p(B,C|A) = p(B,C,A)/p(A)

▶ p(A) = (0.8, 0.2)

▶ p(B,C|A) is displayed in the table
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Q #3b: Step-by-Step Derivation

A B C Prob
T T T 0.16
T T F 0.16
T F T 0.24
T F F 0.24
F T T 0.012
F T F 0.008
F F T 0.108
F F F 0.072

Table: Merge p(A,B,C)

▶ Marginalizing over variable C
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Q #3b: Step-by-Step Derivation p(B|A)

A B Prob
T T 0.32
T F 0.48
F T 0.02
F F 0.18

Table: Computing p(A,B)

▶ Marginalizing over variable C

▶ Joint p(A,B) is displayed in the table
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Q #3b: Step-by-Step Derivation p(B|A)

B (A) Prob
T T 0.32 / 0.8 = 0.4
F T 0.48 / 0.8 = 0.6
T F 0.02 / 0.2 = 0.1
F F 0.18 / 0.2 = 0.9

Table: Computing p(B|A)

▶ Marginalizing over variable C

▶ Conditional p(B|A) is displayed in the table
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Q #3b: Step-by-Step Derivation p(C|A)

A B C Prob
T T T 0.16
T F T 0.24
T T F 0.16
T F F 0.24
F T T 0.012
F F T 0.108
F T F 0.008
F F F 0.072

Table: Merging p(A,B,C)

▶ Marginalizing over variable B
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Q #3b: Step-by-Step Derivation p(C|A)

A C Prob
T T 0.4
T F 0.4
F T 0.12
F F 0.08

Table: Computing p(A,C)

▶ Marginalizing over variable B
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Q #3b: Step-by-Step Derivation p(C|A)

C (A) Prob
T T 0.4 / 0.8 = 0.5
F T 0.4 / 0.8 = 0.5
T F 0.12 / 0.2 = 0.6
F F 0.08 / 0.2 = 0.4

Table: Computing p(C|A)

▶ Marginalizing over variable B

▶ Computing p(C|A)
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Q #3b: Step-by-Step Derivation (Verification)

B (A) Prob

T T 0.4

F T 0.6

T F 0.1

F F 0.9

C (A) Prob

T T 0.5

F T 0.5

T F 0.6

F F 0.4

B C (A) Prob
T T T 0.5 * 0.4 == 0.2
T F T 0.5 * 0.4 == 0.2
F T T 0.5 * 0.6 == 0.3
F F T 0.5 * 0.6 == 0.3
T T F 0.6 * 0.1 == 0.06
T F F 0.4 * 0.1 == 0.04
F T F 0.6 * 0.9 == 0.54
F F F 0.4 * 0.9 == 0.36

All of the probabilities are equal, therefore B and C are
independent given A.
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Inheritance of Handedness

GMother GFather

HMother HFather

GChild

HChild
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Car Diagnostic Network
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Example: Fire alarms

Situations 
& root causes

Events

Sensor outputs 
& reports

Fire Tampering

AlarmSmoke

Leaving Building

Report

Report: “report of people leaving building because a fire alarm went off”
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Example: Medical diagnosis of diabetes

Dspnea

Patient information 
& root causes

Medical 
difficulties & 

diseases

Diagnostic tests 
& symptoms

PregnanciesHeridity OverweightAge

ExerciseGender

Diabetes

Glucose conc. Serum test Diastolic BPFatigue
BMI
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Why Bayesian Networks?

A probabilistic model of the Holmes scenario:

▶ The random variables:
Earthquake, Radio, Burglary, Alarm, Watson, and Gibbon.

▶ # of probabilities in the joint distribution: 26 = 64.

▶ For example,

P (E ∧R ∧B ∧A ∧W ∧G) =?

P (E ∧R ∧B ∧A ∧W ∧ ¬G) =?

... etc ...

We can compute any probability using the joint distribution, but

▶ Quickly become intractable as the number of variables grows.

▶ Unnatural and tedious to specify all the probabilities.
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Why Bayesian Networks?

A Bayesian Network

▶ is a compact version of the joint distribution

▶ takes advantage of the unconditional and conditional
independence among the variables.
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Reminder: Modelling the Holmes Scenario

→ The random variables:

▶ B: A Burglary is happening.

▶ A: The alarm is going.

▶ W: Dr. Watson is calling.

▶ G: Mrs. Gibbon is calling.

▶ E: Earthquake is happening.

▶ R: A report of earthquake is on the radio news.
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A Bayesian Network for the Holmes Scenario

P (R|¬E) = 0.0002, P (R| E) = 0.9

P (B) = 0.0001

P (E) = 0.0003

P (A|¬B ∧ ¬E) = 0.01, P (A|¬B ∧ E) = 0.2
P (A| B ∧ ¬E) = 0.95, P (A| B ∧ E) = 0.96

P (W |¬A) = 0.4
P (W | A) = 0.8

P (G|¬A) = 0.04
P (G| A) = 0.4

E

B

R

A

G

W

How many probabilities do we need to encode the Network?
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Bayesian Network

A Bayesian Network is a directed acyclic graph (DAG).

▶ Each node corresponds to a random variable.

▶ X is a parent of Y if there is an arrow from node X to node
Y .

→ Like a family tree, there are parents, children, ancestors,
descendants.

▶ Each node Xi has a conditional probability distribution
P (Xi|Parents(Xi)) that quantifies the effect of the parents
on the node.
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The Semantics of Bayesian Networks

Two ways to understand Bayesian Networks:

▶ A representation of the joint probability distribution

▶ An encoding of the conditional independence assumptions
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Representing the joint distribution

The idea is that, given a random variable X, a small set of
variables may exist that directly affect the variable’s value in the
sense that X is conditionally independent of other variables given
values for the directly affecting variables.

▶ The set of locally affecting variables is called Markov blanket.

▶ Start with a set of random variables representing all the
features of the model.

▶ Define the parents of random variable Xi, written as
parents(Xi).

▶ Xi is independent from others given the parents(Xi).
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Representing the joint distribution

Markov Blanket: a boundary of a random variable.

Figure: Markov Blanket for random variable 5.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen38 / 52



Representing the joint distribution

We can compute the full joint probability using the following
formula.

P (Xn ∧ · · · ∧X1) =

n∏
i=1

P (Xi|Parents(Xi))
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Representing the joint distribution

Example: What is the probability that all of the following occur?

▶ The alarm has sounded

▶ Neither a burglary nor an earthquake has occurred

▶ Both Watson and Gibbon call and say they hear the alarm

▶ There is no radio report of an earthquake

→ Formulate as a joint probability:

P (¬B ∧ ¬E ∧A ∧ ¬R ∧G ∧W )

= P (¬B)P (¬E)P (A|¬B ∧ ¬E)P (¬R|¬E)P (G|A)P (W |A)
= (1− 0.0001)(1− 0.0003)(0.01)(1− 0.0002)(0.4)(0.8)

= 3.2× 10−3

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen40 / 52



Representing the joint distribution

Example: What is the probability that all of the following occur?

▶ The alarm has sounded

▶ Neither a burglary nor an earthquake has occurred

▶ Both Watson and Gibbon call and say they hear the alarm

▶ There is no radio report of an earthquake

→ Formulate as a joint probability:

P (¬B ∧ ¬E ∧A ∧ ¬R ∧G ∧W )

= P (¬B)P (¬E)P (A|¬B ∧ ¬E)P (¬R|¬E)P (G|A)P (W |A)
= (1− 0.0001)(1− 0.0003)(0.01)(1− 0.0002)(0.4)(0.8)

= 3.2× 10−3

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen40 / 52



Q #4: Calculating the joint probability

Q: What is the probability that all of the following occur?

▶ NEITHER a burglary NOR an earthquake has occurred,

▶ The alarm has NOT sounded,

▶ NEITHER of Watson and Gibbon is calling, and

▶ There is NO radio report of an earthquake?

(A) 0.5699

(B) 0.6699

(C) 0.7699

(D) 0.8699

(E) 0.9699

→ (A)
(1− 0.0001)(1− 0.0003)(1− 0.01)(1− 0.4)(1− 0.04)(1− 0.0002) = 0.5699
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Burglary, Alarm and Watson

Burglary Alarm Watson

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen43 / 52



Q #5: Unconditional Independence

Q: Are Burglary and Watson independent?

Burglary Alarm Watson

(A) Yes

(B) No

(C) Can’t tell.

→ Correct answer is No.

If you learned the value of B, would your belief of W change? If B
is true, then Alarm is more likely to be true, and W is more likely
to be true.
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Q #6: Conditional Independence

Q: Are Burglary and Watson conditionally independent
given Alarm?

Burglary Alarm Watson

(A) Yes

(B) No

(C) Can’t tell

→ Correct answer is Yes.

Assume that W does not observe B directly. W only observes A.

B and W could only influence each other through A.

If A is known, then B and W do not affect each other.
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Alarm, Watson and Gibbon

Alarm

Watson

Gibbon
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Q #7: Unconditional Independence

Q: Are Watson and Gibbon independent?

Alarm

Watson

Gibbon

(A) Yes

(B) No

(C) Can’t tell

→ Correct answer is No. If Watson is more likely to call, then
Alarm is more likely to go off, which means that Gibbon is more
likely to call.
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Q #8 Conditional Independence

Q: Are Watson and Gibbon conditionally independent
given Alarm?

Alarm

Watson

Gibbon

(A) Yes

(B) No

(C) Can’t tell

→ Correct answer is Yes. Watson and Gibbon are both unreliable
sensors for Alarm. If Alarm is known, then Watson and Gibbon do
not affect each other.
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Earthquake, Burglary, and Alarm

Alarm

Earthquake

Burglary
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Q #9 Unconditional Independence

Q: Are Earthquake and Burglary independent?

Alarm

Earthquake

Burglary

(A) Yes

(B) No

(C) Can’t tell

→ Correct answer is Yes.
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Q #10: Conditional Independence

Q: Are Earthquake and Burglary conditionally independent
given Alarm?

Alarm

Earthquake

Burglary

(A) Yes

(B) No

(C) Can’t tell

→ Correct answer is No. Suppose that the Alarm is going. If there
is an Earthquake, then it is less likely that the Alarm is caused by
Burglary. If there is a Burglary, it is less likely that the Alarm is
caused by Earthquake.
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Revisiting Learning Goals

▶ Given a probabilistic model,
determine if two variables are unconditionally independent, or
conditionally independent given a third variable.

▶ Give examples of deriving a compact representation of a joint
distribution by using independence assumptions.

▶ Describe components of a Bayesian network.

▶ Compute a joint probability given a Bayesian network.

▶ Explain the independence relationships in the three key
structures.
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