Constraint Satisfaction Problems

Yuntian Deng

Lecture 4

Readings: RN 6.1 - 6.3. PM 4.1 - 4.4.

Outline

Recap

Learning Goals

Examples of CSP Problems

Formulating a CSP

Solving a CSP

Backtracking Search

The Arc Consistency Definition

The AC-3 Arc Consistency Algorithm

Combining Backtracking and Arc Consistency

Intuition for Admissibility

Why do we need to have admissibility?

- ▶ If there exists a path to the goal node in the frontier with cost $C' \geq C^*$.
- According to admissibility, $C(n) = cost(n) + h(n) < cost(n) + h^*(n)$.
- ► The segment of the optimal path's f-value has to be lower or equal to C*, not to mention C'.
- We have to explore that partial path before exploring the 'fake' goal node.
- ► Therefore, the first-time visit to the goal node is the least-cost visit to the goal node.

Intuition for Consistency

Why do we need to need consistency?

- ▶ If we transition from node n to m, we have $h(n) h(m) \le cost(n, m)$.
- So $f(n) = h(n) + cost(n) \le h(m) + cost(n, m) + cost(n) = h(m) + cost(m) = f(m)$.
- ▶ Whenever we are taking a move from one node to another node, the f value will never decrease.
- The f-value of explored node throughout the search process will never decrease.
- ► Therefore, the first-time visit of any node is the least-cost visit of that node.

Relationship between Admissibility and Consistency

- ▶ Consistency: $h(n) h(m) \le cost(n, m)$.
- Admissibility: $h(n) \leq cost(n, g)$.
- ▶ h(g) is always zero, so admissibility mean $h(n) h(g) \le cost(n, g)$.
- ▶ Admissibility is just a special case of Consistency.
- Consistency is a stronger constraint than Admissibility.

Learning Goals

- Formulate a real-world problem as a constraint satisfaction problem.
- Trace the execution of the backtracking search algorithm.
- ▶ Verify whether a constraint is arc-consistent.
- ► Trace the execution of the AC-3 arc consistency algorithm.
- ► Trace the execution of the backtracking search algorithm with arc consistency.

Recap

Learning Goals

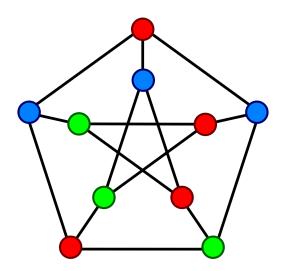
Examples of CSP Problems

Formulating a CSF

Solving a CSF

Crossword Puzzles

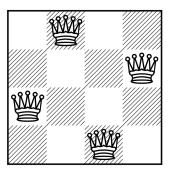
Graph Colouring Problem



Sudoku

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
8 4 7			8		3			1
7				2				6
	6					2	8	
			4	1	9			5 9
				8			7	9

4-Queens Problem



Recap

Learning Goals

Examples of CSP Problems

Formulating a CSP

Solving a CSF

Example

Example 4.9. Suppose the delivery robot must carry out a number of delivery activities, a, b, c, d, and e. Suppose that each activity happens at any of times 1, 2, 3, or 4. Let A be the variable representing the time that activity a will occur, and similarly for the other activities. The variable domains, which represent possible times for each of the deliveries, are

$$dom(A) = \{1, 2, 3, 4\}, \quad dom(B) = \{1, 2, 3, 4\}, \quad dom(C) = \{1, 2, 3, 4\},$$

 $dom(D) = \{1, 2, 3, 4\}, \quad dom(E) = \{1, 2, 3, 4\}.$

Suppose the following constraints must be satisfied:

$$\{ (B \neq 3), (C \neq 2), (A \neq B), (B \neq C), (C < D), (A = D),$$

$$(E < A), (E < B), (E < C), (E < D), (B \neq D) \}$$

It is instructive for you to try to find a model for this example; try to assign a value to each variable that satisfies these constraints.

Generate-and-Test Algorithm

Enumerate:

$$\begin{split} \mathsf{D} &= \{A=1, B=1, C=1, D=1, E=1\} \\ \mathsf{D} &= \{A=1, B=1, C=1, D=1, E=2\} \\ \mathsf{D} &= \{A=1, B=1, C=1, D=1, E=3\} \end{split}$$

..

We call goal(D) at each assignment to evaluate.

Generate-and-Test Algorithm

Enumerate:

$$\begin{split} \mathsf{D} &= \{A=1, B=1, C=1, D=1, E=1\} \\ \mathsf{D} &= \{A=1, B=1, C=1, D=1, E=2\} \\ \mathsf{D} &= \{A=1, B=1, C=1, D=1, E=3\} \end{split}$$

..

We call goal(D) at each assignment to evaluate.

▶ In this case there are $|D| = 4^5 = 1024$ different assignments to be tested. This search algorithm cannot scale up.

Generate-and-Test Algorithm

Enumerate:

$$\begin{split} \mathsf{D} &= \{A=1, B=1, C=1, D=1, E=1\} \\ \mathsf{D} &= \{A=1, B=1, C=1, D=1, E=2\} \\ \mathsf{D} &= \{A=1, B=1, C=1, D=1, E=3\} \end{split}$$

. . .

We call goal(D) at each assignment to evaluate.

- ▶ In this case there are $|D| = 4^5 = 1024$ different assignments to be tested. This search algorithm cannot scale up.
- ▶ It is unnecessarily expensive! Some constraints can be verified with partial states being generated.

Internal Structure of States

- Search algorithms are unaware of the internal structure of states.
 - \rightarrow Generate successors of a state. Test whether a state is a goal.

- ► However, knowing a state's internal structure can help.
- \rightarrow 4-queens: Consider a state with 2 queens in the same row. A search algorithm only knows that this is not a goal and will keep searching. But in fact, this is a dead end and we should backtrack.

Let's model the internal structure of states.

Defining a CSP

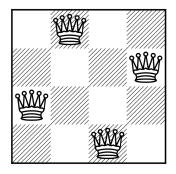
Each state contains

- ▶ A set X of variables: $\{X_1, X_2, ..., X_n\}$.
- ▶ A set D of domains: D_i is the domain for variable X_i , $\forall i$.
- ▶ A set C of constraints specifying allowable value combinations.

A solution is an assignment of values to all the variables that satisfy all the constraints.

 \rightarrow More efficient than search because the constraints will help us eliminate large portions of the search space.

Example: 4-Queens Problem



▶ Variables: x_0, x_1, x_2, x_3 where x_i is the row position of the queen in column i, where $i \in \{0, 1, 2, 3\}$.

Assume that exactly one queen is in each column.

▶ Variables: x_0, x_1, x_2, x_3 where x_i is the row position of the queen in column i, where $i \in \{0, 1, 2, 3\}$.

Assume that exactly one queen is in each column.

▶ Domains: $D_{x_i} = \{0, 1, 2, 3\}$ for all x_i .

▶ Variables: x_0, x_1, x_2, x_3 where x_i is the row position of the queen in column i, where $i \in \{0, 1, 2, 3\}$.

Assume that exactly one queen is in each column.

- ▶ Domains: $D_{x_i} = \{0, 1, 2, 3\}$ for all x_i .
- Constraints:

No pair of queens are in the same row or diagonal.

$$(\forall i(\forall j((i \neq j) \rightarrow ((x_i \neq x_j) \land (|x_i - x_j| \neq |i - j|))))))$$

For example, $((x_0 \neq x_1) \land (|x_0 - x_1| \neq 1))$

Q: Constraints for 4-Queens Problem

Q: Given the definitions of variables and their domains for the 4-queens problems, which constraints do we need to define?

- (A) No two queens can be in the same row.
- (B) No two queens can be in the same column.
- (C) No two queens can be in the same diagonal.
- (D) Two of (A), (B), and (C).
- (E) All of (A), (B), and (C).

Q: Constraints for 4-Queens Problem

Q: Given the definitions of variables and their domains for the 4-queens problems, which constraints do we need to define?

- (A) No two queens can be in the same row.
- (B) No two queens can be in the same column.
- (C) No two queens can be in the same diagonal.
- (D) Two of (A), (B), and (C).
- (E) All of (A), (B), and (C).
- \rightarrow Correct Answer: (D) Two of A, B, and C.

No need to specify column constraint. Already defined separate variables for each column. Implicitly saying that we put one queen in each column.

Defining Constraints

There are two ways of defining a constraint.

- ➤ The list/table format: Give a list/table of values of the variables that satisfy the constraints.
- ► The function/formula format: Give a function/formula, which returns/is true if the values of the variables satisfy the constraint.
- ightarrow In an implementation, the second format is a function, which returns true if the values satisfy the constraint.

Q: Defining Constraints as a Table

Q: Suppose that we use a 2-column table to encode the following constraint. In each row of the table, the two values of x_0 and x_2 satisfy the constraint.

The two queens in columns 0 and 2 are not in the same row or diagonal.

How many rows are there in this table?

- (A) Less than 8
- (B) 8
- (C) 9
- (D) 10
- (E) More than 10

Q: Defining Constraints as a Table

Q: Suppose that we use a 2-column table to encode the following constraint. In each row of the table, the two values of x_0 and x_2 satisfy the constraint.

The two queens in columns 0 and 2 are not in the same row or diagonal.

How many rows are there in this table?

- (A) Less than 8
- (B) 8
- (C) 9
- (D) 10
- (E) More than 10
- → Correct Answer: 8

Q: Defining Constraints as a Formula

Q: How should we encode the following constraint as a propositional formula?

The two queens in columns 0 and 2 are not in the same row or diagonal.

(A)
$$(x_0 \neq x_2)$$

(B)
$$((x_0 \neq x_2) \land ((x_0 - x_2) \neq 1))$$

(C)
$$((x_0 \neq x_2) \land ((x_0 - x_2) \neq 2))$$

(D)
$$((x_0 \neq x_2) \land (|x_0 - x_2| \neq 1))$$

(E)
$$((x_0 \neq x_2) \land (|x_0 - x_2| \neq 2))$$

Q: Defining Constraints as a Formula

Q: How should we encode the following constraint as a propositional formula?

The two queens in columns 0 and 2 are not in the same row or diagonal.

- (A) $(x_0 \neq x_2)$
- (B) $((x_0 \neq x_2) \land ((x_0 x_2) \neq 1))$
- (C) $((x_0 \neq x_2) \land ((x_0 x_2) \neq 2))$
- (D) $((x_0 \neq x_2) \land (|x_0 x_2| \neq 1))$
- $(\mathsf{E})\ ((\mathbf{x_0} \neq \mathbf{x_2}) \wedge (|\mathbf{x_0} \mathbf{x_2}| \neq \mathbf{2}))$
- \rightarrow Correct Answer: (E) $((x_0 \neq x_2) \land (|x_0 x_2| \neq 2))$

Expressing Constraints

► As a propositional formula:

$$((x_0 \neq x_2) \land (|x_0 - x_2| \neq 2))$$

► As a table of allowable combinations of values

x_0	x_1		
0	1		
0	3		
1	0		
1	2		
2	1		
2	3		
3	0		
3	2		

Recap

Learning Goals

Examples of CSP Problems

Formulating a CSP

Solving a CSP

Backtracking Search

The Arc Consistency Definition

The AC-3 Arc Consistency Algorithm

Combining Backtracking and Arc Consistency

- ▶ State: one queen per column in the leftmost *k* columns with no pair of queens attacking each other.
 - Variables: x_0, x_1, x_2, x_3 where x_i is the row position of the queen in column i, where $i \in \{0, 1, 2, 3\}$. Exactly one queen is in each column. $x_i = 0$ denotes that column i does not have a queen.
 - ▶ Domains: $D_{x_i} = \{0, 1, 2, 3\}$ for all x_i .
 - Constraints: No pair of queens are in the same row or diagonal.

- ▶ State: one queen per column in the leftmost *k* columns with no pair of queens attacking each other.
 - Variables: x_0, x_1, x_2, x_3 where x_i is the row position of the queen in column i, where $i \in \{0, 1, 2, 3\}$. Exactly one queen is in each column. $x_i = 1$ denotes that column i does not have a queen.
 - ▶ Domains: $D_{x_i} = \{0, 1, 2, 3\}$ for all x_i .
 - Constraints: No pair of queens are in the same row or diagonal.
- ▶ Initial state: the empty board, that is, _ _ _ _.

- ▶ State: one queen per column in the leftmost *k* columns with no pair of queens attacking each other.
 - Variables: x_0, x_1, x_2, x_3 where x_i is the row position of the queen in column i, where $i \in \{0, 1, 2, 3\}$. Exactly one queen is in each column. $x_i = 0$ denotes that column i does not have a queen.
 - ▶ Domains: $D_{x_i} = \{0, 1, 2, 3\}$ for all x_i .
 - Constraints: No pair of queens are in the same row or diagonal.
- ▶ Initial state: the empty board, that is, _ _ _ _.
- ▶ Goal state: 4 queens on the board. No pair of queens are attacking each other. For example, 2 0 3 1 is a goal state.

4-Queens Incremental CSP Formulation

- ▶ State: one queen per column in the leftmost *k* columns with no pair of queens attacking each other.
 - Variables: x_0, x_1, x_2, x_3 where x_i is the row position of the queen in column i, where $i \in \{0, 1, 2, 3\}$. Exactly one queen is in each column. $x_i = 1$ denotes that column i does not have a queen.
 - ▶ Domains: $D_{x_i} = \{0, 1, 2, 3\}$ for all x_i .
 - Constraints: No pair of queens are in the same row or diagonal.
- ▶ Initial state: the empty board, that is, _ _ _ _.
- ▶ Goal state: 4 queens on the board. No pair of queens are attacking each other. For example, 2 0 3 1 is a goal state.
- ➤ Successor function: add a queen to the leftmost empty column such that it is not attacked by any other existing queen. For example, 0 _ _ _ has two successors 0 2 _ _ and 0 3 _ _.

Algorithm 1 BACKTRACK(assignment, csp)

1: if assignment is complete then return assignment

Algorithm 2 BACKTRACK(assignment, csp)

- 1: if assignment is complete then return assignment
- 2: Let var be an unassigned variable
- 3: for every value in the domain of var do

Algorithm 3 BACKTRACK(assignment, csp)

- 1: if assignment is complete then return assignment
- 2: Let var be an unassigned variable
- 3: for every value in the domain of var do
- 4: **if** adding {var = value} satisfies every constraint **then**

Algorithm 4 BACKTRACK(assignment, csp)

- 1: if assignment is complete then return assignment
- 2: Let var be an unassigned variable
- 3: for every value in the domain of var do
- 4: **if** adding {var = value} satisfies every constraint **then**
- 5: add {var = value} to assignment

Algorithm 5 BACKTRACK(assignment, csp)

- 1: if assignment is complete then return assignment
- 2: Let var be an unassigned variable
- 3: for every value in the domain of var do
- 4: **if** adding {var = value} satisfies every constraint **then**
- 5: add $\{var = value\}$ to assignment
- 6: result ← BACKTRACK(assignment, csp)
- 7: **if** result \neq failure **then return** result

Algorithm 6 BACKTRACK(assignment, csp)

- 1: if assignment is complete then return assignment
- 2: Let var be an unassigned variable
- 3: for every value in the domain of var do
- 4: **if** adding {var = value} satisfies every constraint **then**
 - add {var = value} to assignment
- 6: result ← BACKTRACK(assignment, csp)
- 7: **if** result \neq failure **then return** result
- 8: remove {var = value} from assignment if it was added
- 9: return failure

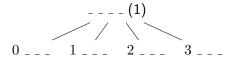
5:

Step 0:

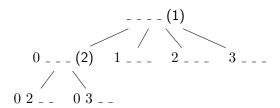
- - - -

	x_0	x_1	x_2	x_3
)				
L				
2				
3				

Step 1:

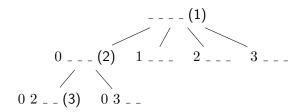


Step 2:



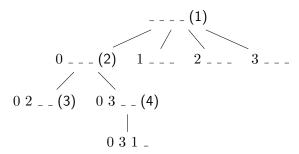
	x_0	x_1	x_2	x_3
0	Q	Χ	Χ	Χ
1	Χ	Χ		
2	Х		Χ	
3	Χ			Χ

Step 3:



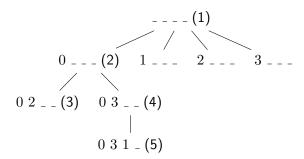
	x_0	x_1	x_2	x_3
0	Q	Χ	Χ	Х
1	Х	Χ	Χ	
2	Χ	Q	Χ	
3	Χ	Χ	Χ	Χ

Step 4:



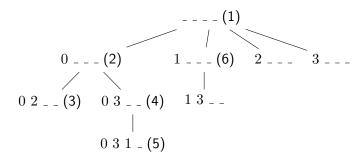
	x_0	x_1	x_2	x_3
0	Q	Χ	Χ	Х
1	Х	Χ		Х
2	Х	Χ	Χ	
3	Χ	Q	Χ	Χ

Step 5:



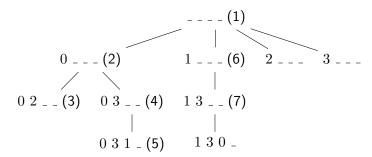
	x_0	x_1	x_2	x_3
0	Q	Χ	Χ	X
1	Х	Χ	Q	Х
2	Х	Χ	Χ	Χ
3	Χ	Q	Χ	Χ

Step 6:

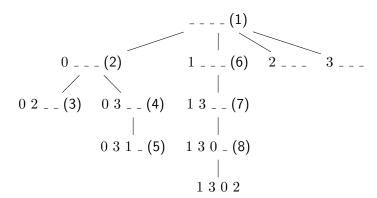


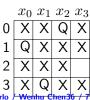
	x_0	x_1	x_2	x_3
0	X	X		
1	Q	Χ	Χ	Χ
2	Х	Χ		
3	Χ		Χ	

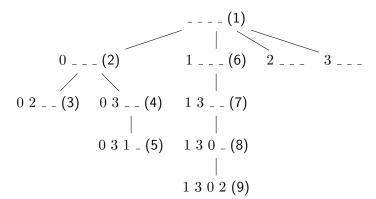
Step 7:



	x_0	x_1	x_2	x_3
0	X	Х		
1	Q	Χ	Χ	Χ
2	Χ	Χ	Χ	
3	Χ	Q	Χ	Χ







Recap

Learning Goals

Examples of CSP Problems

Formulating a CSP

Solving a CSP

Backtracking Search

The Arc Consistency Definition

The AC-3 Arc Consistency Algorithm

Combining Backtracking and Arc Consistency

The Idea of Arc Consistency

 $x_0 = 0$ and $x_1 = 2$ do not lead to a solution. Why?

	x_0	x_1	x_2	x_3
0	Q	X	Х	Χ
1	Χ	Χ	Χ	
2	Χ	Q	Χ	Χ
3	Χ	Χ	Χ	Χ

Handling Different Types of Constraints

Consider binary constraints only.

- How should we handle unary constraints?
 - → Remove invalid values from variable domain

- ► How should be handle constraints involving 3 or more variables?
 - → Convert them to binary constraints

Notation for an Arc

lacktriangleq X and Y are two variables. c(X,Y) is a binary constraint.

$$D_X = X \xrightarrow{\langle X, c(X,Y) \rangle} c(X,Y) \xrightarrow{\langle Y, c(X,Y) \rangle} Y D_Y$$

 $ightharpoonup \langle X, c(X,Y)
angle$ denotes an arc. X is the *primary variable* and Y is the *secondary variable*.

The Arc Consistency Definition

Definition (Arc Consistency)

An arc $\langle X, c(X,Y) \rangle$ is arc-consistent if and only if for every value $v \in D_X$, there is a value $w \in D_Y$ such that (v,w) satisfies the constraint c(X,Y).

Q: Applying The Arc Consistency Definition

Q: Consider the constraint X < Y. Let $D_X = \{1,2\}$ and $D_Y = \{1,2\}$. Is the arc $\langle X,X < Y \rangle$ consistent?

- (A) Yes.
- (B) No.
- (C) Maybe?
- (D) I don't know.

Q: Applying The Arc Consistency Definition

Q: Consider the constraint X < Y. Let $D_X = \{1, 2\}$ and $D_Y = \{1, 2\}$. Is the arc $\langle X, X < Y \rangle$ consistent?

- (A) Yes.
- (B) No.
- (C) Maybe?
- (D) I don't know.
- \rightarrow Correct answer is (B) No. We can remove 2 from D_X .

Recap

Learning Goals

Examples of CSP Problems

Formulating a CSP

Solving a CSP

Backtracking Search

The Arc Consistency Definition

The AC-3 Arc Consistency Algorithm

Combining Backtracking and Arc Consistency

The AC-3 Arc Consistency Algorithm

Algorithm 7 The AC-3 Algorithm

- 1: put every arc in the set S.
- 2: **while** S is not empty **do**
- 3: select and remove $\langle X, c(X,Y) \rangle$ from S
- 4: remove every value in D_X that doesn't have a value in D_Y that satisfies the constraint c(X,Y)
- 5: **if** D_X was reduced **then**
- 6: **if** D_X is empty **then return** false
- 7: for every $Z \neq Y$, add $\langle Z, c'(Z, X) \rangle$ to S return true

Why do we need to add arcs back to S?

Q: After reducing a variable's domain, we may need to add arcs back to S. Why?

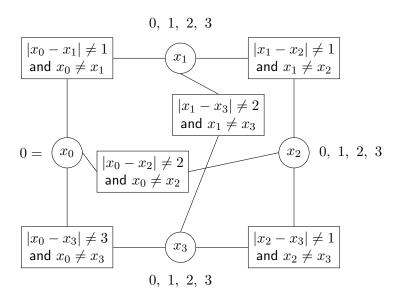
A: Reducing a variable's domain may cause a previously consistent arc to become inconsistent.

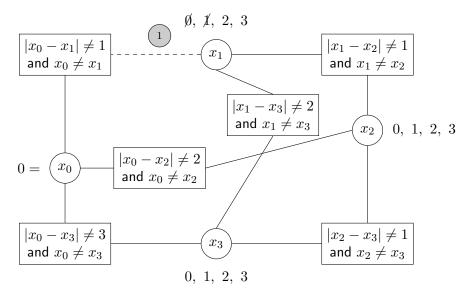
Example:

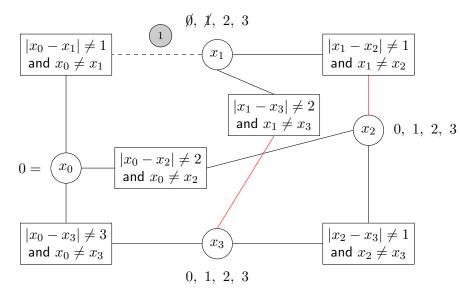
$$\langle X, Y = X \rangle \qquad \langle Z, X < Z \rangle$$

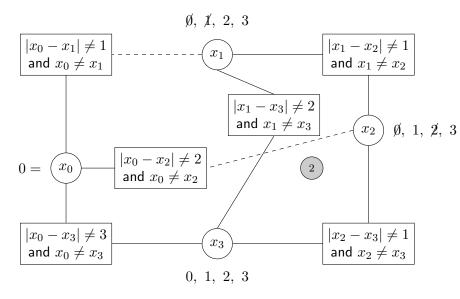
$$Y - Y = X - X - X - Z - Z$$

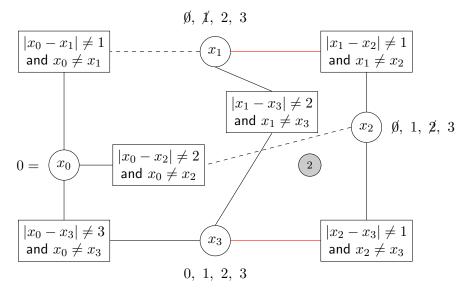
$$2 \qquad 1.2 \qquad 2.3$$

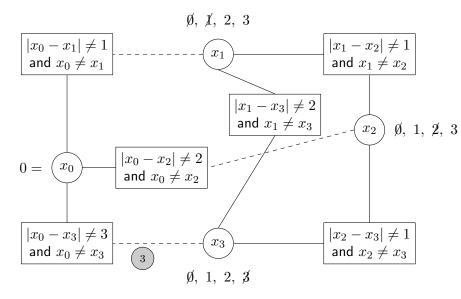


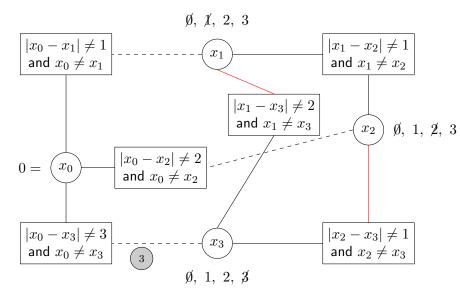


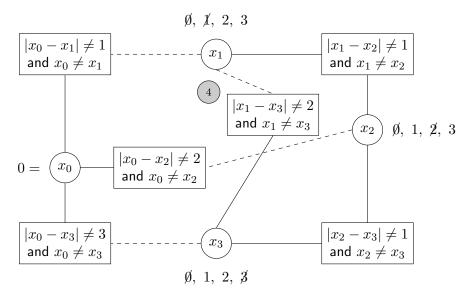


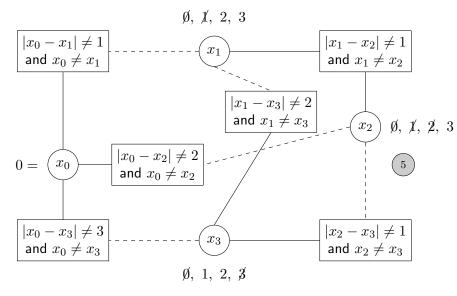




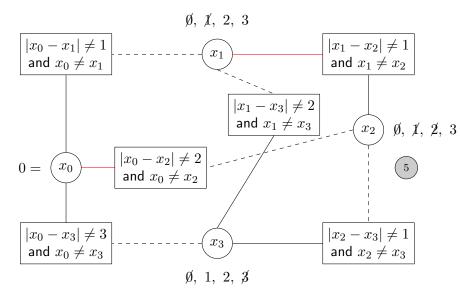




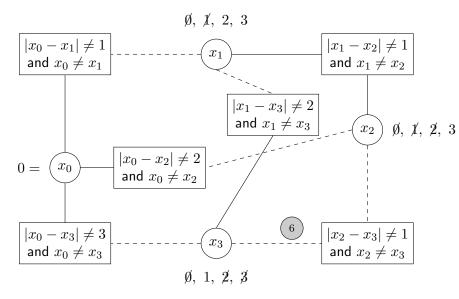




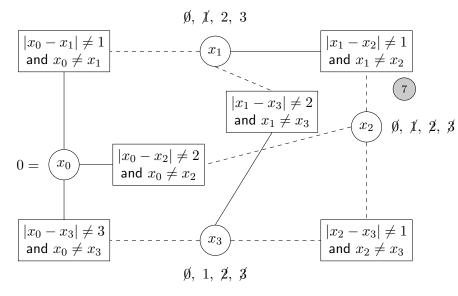
Trace the AC-3 Algorithm on 4-Queens Problem



Trace the AC-3 Algorithm on 4-Queens Problem



Trace the AC-3 Algorithm on 4-Queens Problem



Does the order of removing arcs matter?

▶ Does the order of removing arcs matter?

 \rightarrow No.

- ▶ Does the order of removing arcs matter?
 - \rightarrow No.
- ▶ Three possible outcomes of the arc consistency algorithm:

- Does the order of removing arcs matter?
 - \rightarrow No.
- ▶ Three possible outcomes of the arc consistency algorithm:

 \rightarrow

- 1. A domain is empty. No solution.
- 2. Every domain has 1 value left. Found the solution without search.
- 3. Every domain has at least 1 value left and some domain has multiple values left. Need search to find a solution.

► Is AC-3 guaranteed to terminate?

 \rightarrow Yes.

- ► Is AC-3 guaranteed to terminate?
 - \rightarrow Yes.
- ► What is the complexity of AC-3?

- ▶ Is AC-3 guaranteed to terminate?
 - \rightarrow Yes.
- ▶ What is the complexity of AC-3? → Time complexity: $O(cd^3)$.
 - n variables, c binary constraints, and the size of each domain is at most d. Each arc (X_k, X_i) can be added to the queue at most d times because we can delete at most d values from X_i . Checking consistency of each arc can be done in $O(d^2)$ time.

Recap

Learning Goals

Examples of CSP Problems

Formulating a CSP

Solving a CSP

Backtracking Search

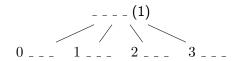
The Arc Consistency Definition

The AC-3 Arc Consistency Algorithm

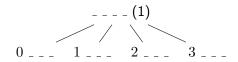
Combining Backtracking and Arc Consistency

Combining Backtracking and Arc Consistency

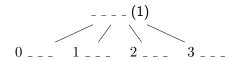
- 1. Perform backtracking search.
- 2. After each value assignment, perform arc consistency.
- 3. If a domain is empty, terminate and return no solution.
- 4. If a unique solution is found, return the solution.
- 5. Otherwise, continue with backtracking search on the unassigned variables.



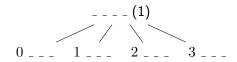
	x_0	x_1	x_2	x_3
0	Q	Х	Х	Χ
1	Χ	Χ		
2	Χ		Χ	
3	Χ			Χ



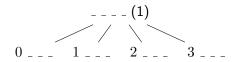
	x_0	x_1	x_2	x_3
0	Q	Х	Χ	X
1	Χ	Χ	1	
2	Χ	Q	Χ	
3	Χ		ı	Χ



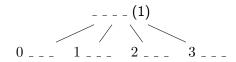
	x_0	x_1	x_2	x_3
0	Q	Х	Χ	X
1	Χ	Χ		
2	Χ	Χ	Χ	
3	Χ			Χ



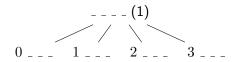
	x_0	x_1	x_2	x_3
0	Q	Х	Х	Χ
1	Χ	Χ	1	
2	Χ	Χ	Χ	Q
3	Χ		ı	Χ



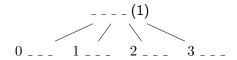
	x_0	x_1	x_2	x_3
0	Q	Х	Χ	X
1	Х	Χ		
2	Χ	Χ	Χ	Χ
3	Χ			Χ



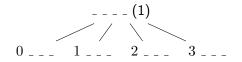
	x_0	x_1	x_2	x_3
0	Q	Χ	Χ	Χ
1	X	Χ	Q	-
2	Χ	Χ	Χ	Χ
3	Χ			Χ



	x_0	x_1	x_2	x_3
0	Q	Х	Х	Χ
1	Χ	Χ	Χ	
2	Χ	Χ	Χ	Χ
3	Χ			Χ

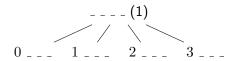


	x_0	x_1	x_2	x_3
0	Q	Х	Χ	X
1	Χ	Χ	Χ	
2	Χ	Χ	Χ	Χ
3	Χ	-	Q	Χ



	x_0	x_1	x_2	x_3
0	Q	Х	X	X
1	Х	Χ	Χ	
2	Χ	Χ	Χ	Х
3	Х		Χ	X

 x_2 's domain is empty after AC-3 arc consistency algorithm, therefore, we can directly trace back.



- ▶ Remove the 0 _ _ _ branch.
- lacktriangle Traceback to the root, and then start searching with 1 _ _ _ ...
- ▶ We run AC-3 arc consistency algorithm, found an assignment with each domain containing one value!
- ► The only solution is found!