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Intuition for Admissibility

Why do we need to have admissibility?

▶ If there exists a path to the goal node in the frontier with cost
C ′ ≥ C∗.

▶ According to admissibility,
C(n) = cost(n) + h(n) < cost(n) + h∗(n).

▶ The segment of the optimal path’s f-value has to be lower or
equal to C∗, not to mention C ′.

▶ We have to explore that partial path before exploring the
‘fake’ goal node.

▶ Therefore, the first-time visit to the goal node is the least-cost
visit to the goal node.
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Intuition for Consistency

Why do we need to need consistency?

▶ If we transition from node n to m, we have
h(n)− h(m) ≤ cost(n,m).

▶ So f(n) = h(n) + cost(n) ≤ h(m) + cost(n,m) + cost(n) =
h(m) + cost(m) = f(m).

▶ Whenever we are taking a move from one node to another
node, the f value will never decrease.

▶ The f-value of explored node throughout the search process
will never decrease.

▶ Therefore, the first-time visit of any node is the least-cost visit
of that node.
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Relationship between Admissibility and Consistency

▶ Consistency: h(n)− h(m) ≤ cost(n,m).

▶ Admissibility: h(n) ≤ cost(n, g).

▶ h(g) is always zero, so admissibility mean
h(n)− h(g) ≤ cost(n, g).

▶ Admissibility is just a special case of Consistency.

▶ Consistency is a stronger constraint than Admissibility.
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Learning Goals

▶ Formulate a real-world problem as a constraint satisfaction
problem.

▶ Trace the execution of the backtracking search algorithm.

▶ Verify whether a constraint is arc-consistent.

▶ Trace the execution of the AC-3 arc consistency algorithm.

▶ Trace the execution of the backtracking search algorithm with
arc consistency.
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Crossword Puzzles
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Graph Colouring Problem
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Sudoku
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4-Queens Problem
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Example
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Generate-and-Test Algorithm

Enumerate:

D={A = 1, B = 1, C = 1, D = 1, E = 1}
D={A = 1, B = 1, C = 1, D = 1, E = 2}
D={A = 1, B = 1, C = 1, D = 1, E = 3}
...
We call goal(D) at each assignment to evaluate.

▶ In this case there are |D| = 45 = 1024 different assignments
to be tested. This search algorithm cannot scale up.

▶ It is unnecessarily expensive! Some constraints can be verified
with partial states being generated.
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Internal Structure of States

▶ Search algorithms are unaware of the internal structure of
states.

→ Generate successors of a state. Test whether a state is a
goal.

▶ However, knowing a state’s internal structure can help.

→ 4-queens: Consider a state with 2 queens in the same row. A
search algorithm only knows that this is not a goal and will keep
searching. But in fact, this is a dead end and we should backtrack.

Let’s model the internal structure of states.
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Defining a CSP

Each state contains

▶ A set X of variables: {X1, X2, ..., Xn}.

▶ A set D of domains: Di is the domain for variable Xi, ∀i.

▶ A set C of constraints specifying allowable value
combinations.

A solution is an assignment of values to all the variables
that satisfy all the constraints.

→ More efficient than search because
the constraints will help us eliminate large portions of the search
space.
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Example: 4-Queens Problem
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4-Queens: State Definition in a CSP

▶ Variables: x0, x1, x2, x3 where xi is the row position of the
queen in column i, where i ∈ {0, 1, 2, 3}.

Assume that exactly one queen is in each column.

▶ Domains: Dxi = {0, 1, 2, 3} for all xi.

▶ Constraints:

No pair of queens are in the same row or diagonal.

(∀i(∀j((i ̸= j)→ ((xi ̸= xj) ∧ (|xi − xj | ≠ |i− j|)))))

For example, ((x0 ̸= x1) ∧ (|x0 − x1| ≠ 1))
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Q: Constraints for 4-Queens Problem

Q: Given the definitions of variables and their domains for the
4-queens problems, which constraints do we need to define?

(A) No two queens can be in the same row.

(B) No two queens can be in the same column.

(C) No two queens can be in the same diagonal.

(D) Two of (A), (B), and (C).

(E) All of (A), (B), and (C).

→ Correct Answer: (D) Two of A, B, and C.
No need to specify column constraint. Already defined separate
variables for each column. Implicitly saying that we put one queen
in each column.
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Defining Constraints

There are two ways of defining a constraint.

▶ The list/table format:
Give a list/table of values of the variables that satisfy the
constraints.

▶ The function/formula format:
Give a function/formula, which returns/is true if the values of
the variables satisfy the constraint.

→ In an implementation, the second format is a function, which
returns true if the values satisfy the constraint.
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Q: Defining Constraints as a Table

Q: Suppose that we use a 2-column table to encode the following
constraint. In each row of the table, the two values of x0 and x2
satisfy the constraint.

The two queens in columns 0 and 2 are not in the same
row or diagonal.

How many rows are there in this table?

(A) Less than 8

(B) 8

(C) 9

(D) 10

(E) More than 10

→ Correct Answer: 8
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Q: Defining Constraints as a Formula

Q: How should we encode the following constraint as a
propositional formula?

The two queens in columns 0 and 2 are not in the same
row or diagonal.

(A) (x0 ̸= x2)

(B) ((x0 ̸= x2) ∧ ((x0 − x2) ̸= 1))

(C) ((x0 ̸= x2) ∧ ((x0 − x2) ̸= 2))

(D) ((x0 ̸= x2) ∧ (|x0 − x2| ≠ 1))

(E) ((x0 ̸= x2) ∧ (|x0 − x2| ≠ 2))
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(D) ((x0 ̸= x2) ∧ (|x0 − x2| ≠ 1))

(E) ((x0 ̸= x2) ∧ (|x0 − x2| ≠ 2))

→ Correct Answer: (E) ((x0 ̸= x2) ∧ (|x0 − x2| ≠ 2))
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Expressing Constraints

▶ As a propositional formula:

((x0 ̸= x2) ∧ (|x0 − x2| ≠ 2))

▶ As a table of allowable combinations of values

x0 x1
0 1

0 3

1 0

1 2

2 1

2 3

3 0

3 2
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4-Queens Incremental CSP Formulation

▶ State: one queen per column in the leftmost k columns with
no pair of queens attacking each other.

▶ Variables: x0, x1, x2, x3 where xi is the row position of the
queen in column i, where i ∈ {0, 1, 2, 3}. Exactly one queen is
in each column. xi = denotes that column i does not have a
queen.

▶ Domains: Dxi
= {0, 1, 2, 3} for all xi.

▶ Constraints: No pair of queens are in the same row or diagonal.

▶ Initial state: the empty board, that is, .

▶ Goal state: 4 queens on the board. No pair of queens are
attacking each other. For example, 2 0 3 1 is a goal state.

▶ Successor function: add a queen to the leftmost empty column
such that it is not attacked by any other existing queen. For
example, 0 has two successors 0 2 and 0 3 .
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Backtracking Search

Algorithm 1 BACKTRACK(assignment, csp)

1: if assignment is complete then return assignment

2: Let var be an unassigned variable
3: for every value in the domain of var do
4: if adding {var = value} satisfies every constraint then
5: add {var = value} to assignment
6: result ← BACKTRACK(assignment, csp)
7: if result ̸= failure then return result

8: remove {var = value} from assignment if it was added

9: return failure
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Backtracking Search

Algorithm 3 BACKTRACK(assignment, csp)
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Backtracking Search

Algorithm 4 BACKTRACK(assignment, csp)
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Backtracking Search

Algorithm 6 BACKTRACK(assignment, csp)

1: if assignment is complete then return assignment
2: Let var be an unassigned variable
3: for every value in the domain of var do
4: if adding {var = value} satisfies every constraint then
5: add {var = value} to assignment
6: result ← BACKTRACK(assignment, csp)
7: if result ̸= failure then return result
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Solve 4-Queens using Backtracking Search

Step 0:

0

1

2

3

x0 x1 x2 x3
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Solve 4-Queens using Backtracking Search

Step 1:

(1)

0 1 2 3

0

1

2

3
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Solve 4-Queens using Backtracking Search

Step 2:

(1)

0 (2)

0 2 0 3

1 2 3

0

1

2

3

x0 x1 x2 x3
Q X X X

X X

X X

X X
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Solve 4-Queens using Backtracking Search

Step 3:

(1)

0 (2)

0 2 (3) 0 3

1 2 3

0

1

2

3

x0 x1 x2 x3
Q X X X

X X X

X Q X

X X X X
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Solve 4-Queens using Backtracking Search

Step 4:

(1)

0 (2)

0 2 (3) 0 3 (4)

0 3 1

1 2 3

0

1

2

3

x0 x1 x2 x3
Q X X X

X X X

X X X

X Q X X
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Solve 4-Queens using Backtracking Search

Step 6:

(1)

0 (2)

0 2 (3) 0 3 (4)

0 3 1 (5)

1 (6)

1 3

2 3

0

1

2

3

x0 x1 x2 x3
X X
Q X X X

X X

X X
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Solve 4-Queens using Backtracking Search

Step 7:

(1)

0 (2)

0 2 (3) 0 3 (4)

0 3 1 (5)

1 (6)

1 3 (7)

1 3 0

2 3

0

1

2

3

x0 x1 x2 x3
X X
Q X X X

X X X

X Q X X
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Solve 4-Queens using Backtracking Search
Step 8:
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Step 9:

(1)

0 (2)

0 2 (3) 0 3 (4)

0 3 1 (5)
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1 3 (7)

1 3 0 (8)
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2 3

0

1

2

3
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Learning Goals

Examples of CSP Problems

Formulating a CSP

Solving a CSP

Backtracking Search

The Arc Consistency Definition

The AC-3 Arc Consistency Algorithm

Combining Backtracking and Arc Consistency
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The Idea of Arc Consistency

x0 = 0 and x1 = 2 do not lead to a solution. Why?

0

1

2

3

x0 x1 x2 x3
Q X X X

X X X

X Q X X

X X X X
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Handling Different Types of Constraints

▶ Consider binary constraints only.

▶ How should we handle unary constraints?

→ Remove invalid values from variable domain

▶ How should be handle constraints involving 3 or more
variables?

→ Convert them to binary constraints
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Notation for an Arc

▶ X and Y are two variables. c(X,Y ) is a binary constraint.

DX X c(X,Y ) Y DY

⟨X, c(X,Y )⟩ ⟨Y, c(X,Y )⟩

▶ ⟨X, c(X,Y )⟩ denotes an arc.
X is the primary variable and Y is the secondary variable.
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The Arc Consistency Definition

Definition (Arc Consistency)

An arc ⟨X, c(X,Y )⟩ is arc-consistent if and only if
for every value v ∈ DX , there is a value w ∈ DY

such that (v, w) satisfies the constraint c(X,Y ).
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Q: Applying The Arc Consistency Definition

Q: Consider the constraint X < Y . Let DX = {1, 2} and
DY = {1, 2}. Is the arc ⟨X,X < Y ⟩ consistent?

(A) Yes.

(B) No.

(C) Maybe?

(D) I don’t know.
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Q: Applying The Arc Consistency Definition

Q: Consider the constraint X < Y . Let DX = {1, 2} and
DY = {1, 2}. Is the arc ⟨X,X < Y ⟩ consistent?

(A) Yes.

(B) No.

(C) Maybe?

(D) I don’t know.

→ Correct answer is (B) No. We can remove 2 from DX .
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The AC-3 Arc Consistency Algorithm

Algorithm 7 The AC-3 Algorithm

1: put every arc in the set S.
2: while S is not empty do
3: select and remove ⟨X, c(X,Y )⟩ from S
4: remove every value in DX that doesn’t have a value in DY

that satisfies the constraint c(X,Y )
5: if DX was reduced then
6: if DX is empty then return false
7: for every Z ̸= Y , add ⟨Z, c′(Z,X)⟩ to S

return true
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Why do we need to add arcs back to S?

Q: After reducing a variable’s domain,
we may need to add arcs back to S. Why?

A: Reducing a variable’s domain may
cause a previously consistent arc to become inconsistent.

Example:

Y

2

Y = X

⟨X,Y = X⟩

X

1, 2

X < Z Z

2, 3

⟨Z,X < Z⟩
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Trace the AC-3 Algorithm on 4-Queens Problem

|x0 − x1| ≠ 1
and x0 ̸= x1

x1

0, 1, 2, 3

|x1 − x2| ≠ 1
and x1 ̸= x2

x00 = |x0 − x2| ≠ 2
and x0 ̸= x2

|x1 − x3| ≠ 2
and x1 ̸= x3

x2 0, 1, 2, 3

|x0 − x3| ≠ 3
and x0 ̸= x3

x3

0, 1, 2, 3

|x2 − x3| ≠ 1
and x2 ̸= x3
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and x2 ̸= x3

|x0 − x3| ≠ 3
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Trace the AC-3 Algorithm on 4-Queens Problem
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and x1 ̸= x2

|x2 − x3| ≠ 1
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Properties of the AC-3 Algorithm

▶ Does the order of removing arcs matter?

→ No.

▶ Three possible outcomes of the arc consistency algorithm:

→
1. A domain is empty. No solution.
2. Every domain has 1 value left. Found the solution without
search.
3. Every domain has at least 1 value left and some domain
has multiple values left. Need search to find a solution.
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Properties of the AC-3 Algorithm

▶ Is AC-3 guaranteed to terminate?

→ Yes.

▶ What is the complexity of AC-3? → Time complexity:
O(cd3).
n variables, c binary constraints, and the size of each domain
is at most d. Each arc (Xk, Xi) can be added to the queue at
most d times because we can delete at most d values from Xi.
Checking consistency of each arc can be done in O(d2) time.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen61 / 73



Properties of the AC-3 Algorithm

▶ Is AC-3 guaranteed to terminate?

→ Yes.

▶ What is the complexity of AC-3?

→ Time complexity:
O(cd3).
n variables, c binary constraints, and the size of each domain
is at most d. Each arc (Xk, Xi) can be added to the queue at
most d times because we can delete at most d values from Xi.
Checking consistency of each arc can be done in O(d2) time.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen61 / 73



Properties of the AC-3 Algorithm

▶ Is AC-3 guaranteed to terminate?

→ Yes.

▶ What is the complexity of AC-3? → Time complexity:
O(cd3).
n variables, c binary constraints, and the size of each domain
is at most d. Each arc (Xk, Xi) can be added to the queue at
most d times because we can delete at most d values from Xi.
Checking consistency of each arc can be done in O(d2) time.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen61 / 73



Recap

Learning Goals

Examples of CSP Problems

Formulating a CSP

Solving a CSP

Backtracking Search

The Arc Consistency Definition

The AC-3 Arc Consistency Algorithm

Combining Backtracking and Arc Consistency

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen62 / 73



Combining Backtracking and Arc Consistency

1. Perform backtracking search.

2. After each value assignment, perform arc consistency.

3. If a domain is empty, terminate and return no solution.

4. If a unique solution is found, return the solution.

5. Otherwise, continue with backtracking search
on the unassigned variables.
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Solving 4-Queens Problem with Backtracking and AC-3

(1)

0 1 2 3

0

1

2

3

x0 x1 x2 x3
Q X X X

X X

X X

X X
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Solving 4-Queens Problem with Backtracking and AC-3

(1)

0 1 2 3

0

1

2

3

x0 x1 x2 x3
Q X X X

X X -

X Q X

X - X
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Solving 4-Queens Problem with Backtracking and AC-3
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0 1 2 3
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Solving 4-Queens Problem with Backtracking and AC-3

(1)

0 1 2 3
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Solving 4-Queens Problem with Backtracking and AC-3
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Solving 4-Queens Problem with Backtracking and AC-3

(1)

0 1 2 3

0

1

2

3

x0 x1 x2 x3
Q X X X

X X X

X X X X

X - Q X
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Solving 4-Queens Problem with Backtracking and AC-3

(1)

0 1 2 3

0

1

2

3

x0 x1 x2 x3
Q X X X

X X X

X X X X

X X X

x2’s domain is empty after AC-3 arc consistency algorithm,
therefore, we can directly trace back.
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Solving 4-Queens Problem with Backtracking and AC-3

(1)

0 1 2 3

▶ Remove the 0 branch.

▶ Traceback to the root, and then start searching with 1 .

▶ We run AC-3 arc consistency algorithm, found an assignment
with each domain containing one value!

▶ The only solution is found!
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