
Neural Networks - Part 2

Yuntian Deng

Lecture 20

Readings: RN 19.6.2, 21.1, 21.2, PM 7.5, GBC 4.3, 6.5

CS 486/686: Intro to AI Lecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 1 / 30



Outline

Learning Goals

Gradient Descent

The Backpropagation Algorithm

The Backpropagation Algorithm in Matrix

When to use Decision Trees and Neural Networks

Revisiting Learning Goals

CS 486/686: Intro to AI Lecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 2 / 30



Learning Goals

▶ Explain the steps of the gradient descent algorithm.

▶ Explain how we can modify gradient descent to speed up
learning and ensure convergence.

▶ Describe the back-propagation algorithm including the forward
and backward passes.

▶ Compute the gradient for a weight in a multi-layer
feed-forward neural network.

▶ Describe situations in which it is appropriate to use a neural
network or a decision tree.

CS 486/686: Intro to AI Lecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 3 / 30



Learning Goals

Gradient Descent

The Backpropagation Algorithm

The Backpropagation Algorithm in Matrix

When to use Decision Trees and Neural Networks

Revisiting Learning Goals

CS 486/686: Intro to AI Lecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 4 / 30



A 2-Layer Neural Network

CS 486/686: Intro to AI Lecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 5 / 30



A 2-Layer Neural Network

Assuming that we want the output of the 2-Layer neural network
to be close to certain target value.

Let’s assume we are doing spam classification:

The input x1 and x2 are two features: the email length x1 and
whether the email is coming from a trusted organization x2.

We have paired training data, x1, x2, y = {0, 1}.

Therefore, we can feed x1 and x2 to the neural network to obtain
its output a

(2)
1 and a

(2)
2 .

CS 486/686: Intro to AI Lecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 6 / 30



Neural Network Approximation

Let’s assume that a
(2)
1 denotes how likely the email is a spam and

a
(2)
2 denotes how unlikely the email is a spam.

▶ If an input email is a spam, the desired output should be

[a
(2)
1 , a

(2)
2 ] = [1, 0].

▶ If an input email is not a spam, the desired output should be

[a
(2)
1 , a

(2)
2 ] = [0, 1].

▶ If an input email is indistinguishable, the desired output

should be [a
(2)
1 , a

(2)
2 ] = [0.5, 0.5].

CS 486/686: Intro to AI Lecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 7 / 30



Measuring the Loss Function

Let’s assume we want to measure the discrepancy between neural
network output and the reference label. The discrepancy is also
called loss function E. For example, we can have square difference
loss as follows:

E =
∑
i

(a
(2)
i − yi)

2

We will be using E as the training signal to perform gradient
descent.

CS 486/686: Intro to AI Lecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 8 / 30



Gradient Descent

“Walking downhill and always taking a step in the direction
that goes down the most.”

▶ A local search algorithm to find the minimum of a function.

▶ Steps of the algorithm:

▶ Initialize weights randomly.

▶ Change each weight in proportion to the negative of the partial
derivative of the error with respect to the weight.

W := W − η
∂E

∂W

▶ η is the learning rate.

▶ Terminate after some number of steps, when the error is small,
or when the changes get small.

CS 486/686: Intro to AI Lecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 9 / 30



Why update the weight proportional to
the negative of the partial derivative?

▶ Suppose that we want to find the minimum of y = x2.

→ Think of x as the weight and y as the error.

▶ Start with x = x0.

▶ In what direction should we change the value of x?

→ If the gradient is positive, we want to decrease x0. If the
gradient is negative, we want to increase x0.

We want to move in the direction of the negative of the
gradient.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen10 / 30



Why update the weight proportional to
the negative of the partial derivative?

▶ Suppose that we want to find the minimum of y = x2.

→ Think of x as the weight and y as the error.

▶ Start with x = x0.

▶ In what direction should we change the value of x?

→ If the gradient is positive, we want to decrease x0. If the
gradient is negative, we want to increase x0.

We want to move in the direction of the negative of the
gradient.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen10 / 30



Why update the weight proportional to
the negative of the partial derivative?

▶ By what amount should we change the value of x?
What is the step size?

→ If the gradient is large, the curve is steep and we are likely
far from the minimum. We can afford to take a larger step. If
the gradient is small, the curve is flat and we are likely close
to the minimum. We want to take a smaller step.

Take a step proportional to the gradient.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen11 / 30



How do we update the weights based on the data points?

▶ Gradient descent updates the weights after sweeping through
all the examples.

▶ To speed up learning, update weights after each example.

▶ Incremental gradient descent → update weights after each
example.

▶ Stochastic gradient descent → same as incremental version
except each example is chosen randomly.

→ With cheaper steps, weights become more accurate more
quickly, but not guaranteed to converge as individual examples
can move the weights away from the minimum.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen12 / 30



How do we update the weights based on the data points?

▶ Trade off learning speed and convergence.

▶ Batched gradient descent

→ update weights after a batch of examples.

batch = all the examples −→ gradient descent.

batch = one example −→ incremental gradient descent.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen13 / 30



Learning Goals

Gradient Descent

The Backpropagation Algorithm

The Backpropagation Algorithm in Matrix

When to use Decision Trees and Neural Networks

Revisiting Learning Goals

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen14 / 30



A 2-Layer Neural Network

Let ŷ be the output of a network (i.e. prediction).
For this network, ŷ = z(2)

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen15 / 30



The Backpropagation Algorithm

▶ An efficient method of calculating the gradients in a
multi-layer neural network.

▶ Given training examples (x⃗n, y⃗n) and an error/loss function
E(ŷ, y). Perform 2 passes.

▶ Forward pass: compute the error E given the inputs and
the weights.

▶ Backward pass: compute the gradients
∂E

∂W
(2)
j,k

and
∂E

∂W
(1)
i,j

.

▶ Update each weight by the sum of the partial derivatives
for all the training examples.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen16 / 30



Forward Pass for a 2-layer Network

Calculate the values of z
(1)
j and z

(2)
k and E.

a
(1)
j =

∑
i

xiW
(1)
i,j z

(1)
j = g(a

(1)
j ) (1)

a
(2)
k =

∑
j

z
(1)
j W

(2)
j,k z

(2)
k = g(a

(2)
k ) (2)

E(z(2), y) (3)

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen17 / 30



Backward Pass for a 2-layer Network

Calculate the gradients for W
(1)
i,j and W

(2)
j,k .

∂E

∂W
(2)
j,k

=
∂E

∂a
(2)
k

z
(1)
j = δ

(2)
k z

(1)
j , δ

(2)
k =

∂E

∂z
(2)
k

g′(a
(2)
k ) (4)

∂E

∂W
(1)
i,j

=
∂E

∂a
(1)
j

xi = δ
(1)
j xi, δ

(1)
j =

(∑
k

δ
(2)
k W

(2)
j,k

)
g′(a

(1)
j ) (5)

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen18 / 30



The recursive relationship

For unit j of layer ℓ, δ
(ℓ)
j =

∂E

∂a
(ℓ)
j

.

δ
(ℓ)
j =


∂E

∂z
(ℓ)
j

× g′(a
(ℓ)
j ), base case, j is an output unit(∑

k

δ
(ℓ+1)
k W

(ℓ+1)
j,k

)
× g′(a

(ℓ)
j ), recursive case, j is a hidden unit

(6)

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen19 / 30



A concrete example of forward and backward pass

Calculate W
(2)
j,k and W

(1)
i,j given the information below.

▶ The error function is the sum of squares error.

E =
∑
k

(ŷk − yk)
2

▶ The activation function is the sigmoid function.

g(x) =
1

1 + e−x

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen20 / 30



The derivative of g(x)

Sigmoid Function Derivative:

∂g(x)

∂x
=

1

1 + e−x

e−x

1 + e−x
= g(x)(1− g(x))

It means that during forward propagation, we can save the
intermediate values of g(x) to directly compute ∂g(x)

∂x .

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen21 / 30



Learning Goals

Gradient Descent

The Backpropagation Algorithm

The Backpropagation Algorithm in Matrix

When to use Decision Trees and Neural Networks

Revisiting Learning Goals

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen22 / 30



The recursive relationship

For the i-th layer output x(i):

∂g(x(i))

∂x(i)
=


g(x

(i)
1 )(1− g(x

(i)
1 )) 0 · · · 0

0 g(x
(i)
2 )(1− g(x

(i)
2 )) · · · 0

...
...

. . .
...

0 0 · · · g(x
(i)
d )(1− g(x

(i)
d ))


where j indexes the j-th element in the i-th vector g(x

(i)
j ).

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen23 / 30



The recursive relationship

At i-th layer, assuming there are d neurons:

Through backward propagation, the derivative w.r.t to g(xi) is
denoted as δi =

∂E
∂g(x(i))

∈ Rd.

δi−1 =
∂E

∂g(xi−1)
=

∂E

∂g(x(i))
· ∂g(x

(i))

∂x(i)
· ∂x(i)

∂g(x(i−1))

According to definition: ∂x(i)

∂g(x(i−1))
= Wi ∈ Rd×d′ , where d′ is the

number of neurons in i− 1-th layer.

Therefore, we can conclude:

δi−1 = δi ·
∂g(x(i))

∂x(i)
·Wi

where δi−1 ∈ Rd′

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen24 / 30



The recursive relationship

Backward Propagation Algorithm:

▶ Initialize Wi for all the layers.

▶ Feedforward x into neural network and save intermediate
values g(x(1)), g(x(2)), · · · .

▶ Compute δn = ∂E
∂z .

▶ For i = n → 1; do

▶ δi−1 = δi · ∂g(x(i))
∂x(i) ·Wi

▶ Compute ∂E
∂Wi

= δi · ∂g(x(i))
∂x(i) · g(x(i−1))

▶ Obtain all ∂E
∂Wi

for gradient descent.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen25 / 30



Learning Goals

Gradient Descent

The Backpropagation Algorithm

The Backpropagation Algorithm in Matrix

When to use Decision Trees and Neural Networks

Revisiting Learning Goals

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen26 / 30



When should we use Neural Network?

▶ High dimensional or real-valued inputs, noisy (sensor) data.

▶ Form of target function is unknown (no model).

▶ Not important for humans to explain the learned function.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen27 / 30



When should we NOT use Neural Network?

▶ Difficult to determine the network structure (number of layers,
number of neurons).

▶ Difficult to interpret weights, especially in multi-layered
networks.

▶ Tendency to overfit in practice (poor predictions outside of
the range of values it was trained on).

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen28 / 30



Decision Tree v.s. Neural Network
▶ Data types. → NN: images, audio, text. DT: tabular data.

▶ Size of data set. → DT: can work with very little data. NN:
requires a lot of data. easily overfit.

▶ Form of target function. → NN: Can model arbitrary
functions. DT: nested if-then-else statement.

▶ The architecture. → NN: num of layers, num of neurons per
layer, activation function, initial weights, learning rate. All are
critical.DT: some params to prevent overfitting.

▶ Interpret the learned function. → DT: Easily interpretable.
Can explain to other people. (Finance). NN: black box.
Difficult/impossible to interpret.

▶ Time available for training and classification. → DT: fast.
NN: slow to train and test.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen29 / 30



Decision Tree v.s. Neural Network
▶ Data types. → NN: images, audio, text. DT: tabular data.

▶ Size of data set. → DT: can work with very little data. NN:
requires a lot of data. easily overfit.

▶ Form of target function. → NN: Can model arbitrary
functions. DT: nested if-then-else statement.

▶ The architecture. → NN: num of layers, num of neurons per
layer, activation function, initial weights, learning rate. All are
critical.DT: some params to prevent overfitting.

▶ Interpret the learned function. → DT: Easily interpretable.
Can explain to other people. (Finance). NN: black box.
Difficult/impossible to interpret.

▶ Time available for training and classification. → DT: fast.
NN: slow to train and test.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen29 / 30



Decision Tree v.s. Neural Network
▶ Data types. → NN: images, audio, text. DT: tabular data.

▶ Size of data set. → DT: can work with very little data. NN:
requires a lot of data. easily overfit.

▶ Form of target function. → NN: Can model arbitrary
functions. DT: nested if-then-else statement.

▶ The architecture. → NN: num of layers, num of neurons per
layer, activation function, initial weights, learning rate. All are
critical.DT: some params to prevent overfitting.

▶ Interpret the learned function. → DT: Easily interpretable.
Can explain to other people. (Finance). NN: black box.
Difficult/impossible to interpret.

▶ Time available for training and classification. → DT: fast.
NN: slow to train and test.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen29 / 30



Decision Tree v.s. Neural Network
▶ Data types. → NN: images, audio, text. DT: tabular data.

▶ Size of data set. → DT: can work with very little data. NN:
requires a lot of data. easily overfit.

▶ Form of target function. → NN: Can model arbitrary
functions. DT: nested if-then-else statement.

▶ The architecture. → NN: num of layers, num of neurons per
layer, activation function, initial weights, learning rate. All are
critical.DT: some params to prevent overfitting.

▶ Interpret the learned function. → DT: Easily interpretable.
Can explain to other people. (Finance). NN: black box.
Difficult/impossible to interpret.

▶ Time available for training and classification. → DT: fast.
NN: slow to train and test.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen29 / 30



Decision Tree v.s. Neural Network
▶ Data types. → NN: images, audio, text. DT: tabular data.

▶ Size of data set. → DT: can work with very little data. NN:
requires a lot of data. easily overfit.

▶ Form of target function. → NN: Can model arbitrary
functions. DT: nested if-then-else statement.

▶ The architecture. → NN: num of layers, num of neurons per
layer, activation function, initial weights, learning rate. All are
critical.DT: some params to prevent overfitting.

▶ Interpret the learned function. → DT: Easily interpretable.
Can explain to other people. (Finance). NN: black box.
Difficult/impossible to interpret.

▶ Time available for training and classification. → DT: fast.
NN: slow to train and test.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen29 / 30



Decision Tree v.s. Neural Network
▶ Data types. → NN: images, audio, text. DT: tabular data.

▶ Size of data set. → DT: can work with very little data. NN:
requires a lot of data. easily overfit.

▶ Form of target function. → NN: Can model arbitrary
functions. DT: nested if-then-else statement.

▶ The architecture. → NN: num of layers, num of neurons per
layer, activation function, initial weights, learning rate. All are
critical.DT: some params to prevent overfitting.

▶ Interpret the learned function. → DT: Easily interpretable.
Can explain to other people. (Finance). NN: black box.
Difficult/impossible to interpret.

▶ Time available for training and classification. → DT: fast.
NN: slow to train and test.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen29 / 30



Revisiting Learning Goals

▶ Explain the steps of the gradient descent algorithm.

▶ Explain how we can modify gradient descent to speed up
learning and ensure convergence.

▶ Describe the back-propagation algorithm including the forward
and backward passes.

▶ Compute the gradient for a weight in a multi-layer
feed-forward neural network.

▶ Describe situations in which it is appropriate to use a neural
network or a decision tree.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen30 / 30


	Learning Goals
	Gradient Descent
	The Backpropagation Algorithm
	The Backpropagation Algorithm in Matrix
	When to use Decision Trees and Neural Networks
	Revisiting Learning Goals

