Decision Trees

Yuntian Deng

Lecture 18

Readings: RN 19.3, PM 7.3.1.

CS 486/686: Intro to AI Lecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 1 / 46

Outline

Examples of Decision Trees

Definition and Classifying an Example

Grow a Full Tree

Decision Tree Learning Algorithm

Determine the Order of Testing Features

CS 486/686: Intro to AI Lecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 2 / 46

Learning Goals

Describe the components of a decision tree.

- Construct a decision tree given an order of testing the features.
- Determine the prediction accuracy of a decision tree on a test set.
- Compute the entropy of a probability distribution.
- Compute the expected information gain for selecting a feature.
- Trace the execution of and implement the algorithm for learning a decision tree.

Examples of Decision Trees

Definition and Classifying an Example

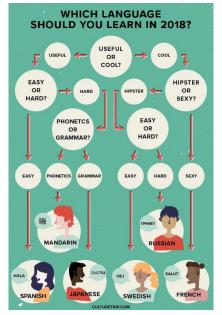
Grow a Full Tree

Decision Tree Learning Algorithm

Determine the Order of Testing Features

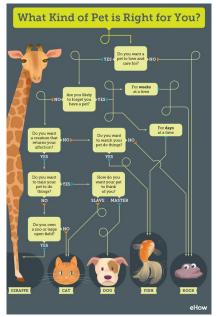
CS 486/686: Intro to Al Lecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 4 / 46

Which language should you learn?



CS 486/686: Intro to AI Lecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 5 / 46

What kind of pet is right for you?



CS 486/686: Intro to AI Lecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 6 / 46

Should I use an emoji?

CS 486/686: Intro to AI Lecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 7 / 46

Running example: Jeeves the valet

Jeeves is a valet to Bertie Wooster. On some days, Bertie likes to play tennis and asks Jeeves to lay out his tennis things and book the court. Jeeves would like to predict whether Bertie will play tennis (and so be a better valet). Each morning over the last two weeks, Jeeves has recorded whether Bertie played tennis on that day and various attributes of the weather (training set).

Jeeves would like to evaluate the classifier he has come up with for predicting whether Bertie will play tennis. Each morning over the next two weeks, Jeeves records more data (test set).

Jeeves the valet - training set

Day	Outlook	Temp	Humidity	Wind	Tennis?
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

CS 486/686: Intro to AI Lecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 9 / 46

Jeeves the valet - test set

Day	Outlook	Temp	Humidity	Wind	Tennis?
1	Sunny	Mild	High	Strong	No
2	Rain	Hot	Normal	Strong	No
3	Rain	Cool	High	Strong	No
4	Overcast	Hot	High	Strong	Yes
5	Overcast	Cool	Normal	Weak	Yes
6	Rain	Hot	High	Weak	Yes
7	Overcast	Mild	Normal	Weak	Yes
8	Overcast	Cool	High	Weak	Yes
9	Rain	Cool	High	Weak	Yes
10	Rain	Mild	Normal	Strong	No
11	Overcast	Mild	High	Weak	Yes
12	Sunny	Mild	Normal	Weak	Yes
13	Sunny	Cool	High	Strong	No
14	Sunny	Cool	High	Weak	No

CS 486/686: Intro to AILecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen10 / 46

Examples of Decision Trees

Definition and Classifying an Example

Grow a Full Tree

Decision Tree Learning Algorithm

Determine the Order of Testing Features

CS 486/686: Intro to AlLecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen11 / 46

What is a decision tree?

CS 486/686: Intro to AILecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen12 / 46

What is a decision tree?

► A simple model for supervised classification.

 \rightarrow One of the simplest, yet useful and widely successful ML algorithms.

• A single discrete target feature.

 \rightarrow Each value in the domain of the target feature is a class.

 Each internal node performs a Boolean test on an input feature.

► The edges are labeled with values of the input feature. → yes/no. true/false.

► Each leaf node specifies a value for the target feature.
 → specifies a class.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen13 / 46

Classify an example using a decision tree

- Go down the tree, evaluate each test and follow the corresponding edge.
- When a leaf is reached, return the classification on that leaf.
- E.g. Should I use an emoji?
 - I am 30 years old.
 - This is work related.
 - I am an accountant.
 - I am not trying to get fired.

$\rightarrow \, {\rm No}.$

If we convert a decision tree to a program, what does it look like?

 \rightarrow A nested if-then-else structure.

CS 486/686: Intro to AlLecturer: Yuntian Deng

Issues in learning a decision tree

How should we build a decision tree?

- ▶ We need to determine an order of testing the input features.
- Given an order of testing the input features, we can build a decision tree by splitting the examples.

Issues in learning a decision tree

How should we build a decision tree?

- We need to determine an order of testing the input features.
- Given an order of testing the input features, we can build a decision tree by splitting the examples.

Which decision tree should we generate?

- Which order of testing the input features should we use?
 - The search space is too big for systematic search.
 - Solution: greedy (myopic) search.
- Should we grow a full tree or not?
 - A decision tree can represent any discrete function of input features.
 - Need a bias. For example, prefer the smallest tree. (Least depth? Fewest nodes?)

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen15 / 46

Examples of Decision Trees

Definition and Classifying an Example

Grow a Full Tree

Decision Tree Learning Algorithm

Determine the Order of Testing Features

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen16 / 46

Construct a Decision Tree Given an Order of Testing Features

 \rightarrow Given an order of testing features, it's straightforward to generate a decision tree.

Construct a decision tree using the following order of testing features.

First, test Outlook.

- ► For Outlook = Sunny, test Temp.
- For Outlook = Rain, test Wind.
- ▶ For other branches, test Humidity before testing Wind.

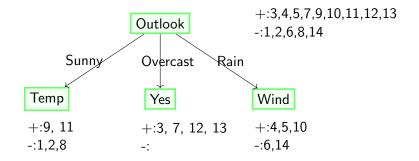
Let's draw the decision tree.

CS 486/686: Intro to AlLecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen17 / 46

Example: Decision tree

+:3,4,5,7,9,10,11,12,13 -:1,2,6,8,14

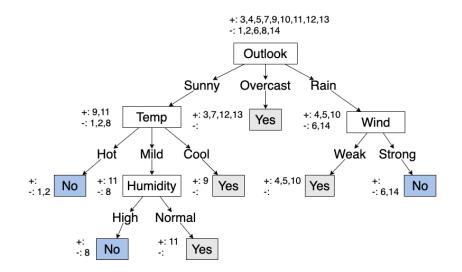
Example: Decision tree



CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / BI

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen18 / 46

Example: Decision tree



CS 486/686: Intro to AlLecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen19 / 46

We stop in any of the following scenarios:

- All the examples belong to the same class.
- There are no more features to test.
- ► There are no more examples.

Day	Outlook	Temp	Humidity	Wind	Tennis?
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No
15	Sunny	Mild	High	Weak	No
16	Sunny	Mild	High	Weak	Yes
17	Sunny	Mild	High	Strong	Yes

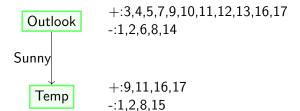
CS 486/686: Intro to AlLecturer: Yuntian Deng

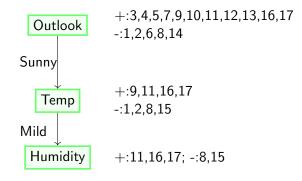
Slides: Alice Gao / Blake Vanberlo / Wenhu Chen21 / 46

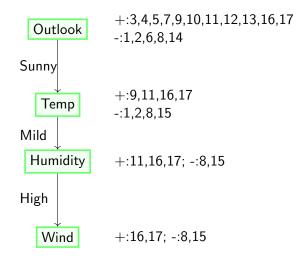
Complete the branch of the tree where Outlook = Sunny, Temp = Mild, Humidity = High

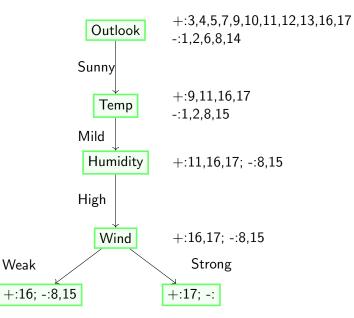
CS 486/686: Intro to AlLecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen22 / 46

+:3,4,5,7,9,10,11,12,13,16,17-:1,2,6,8,14









CS 486/686: Intro to AILecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen23 / 46

 \rightarrow

Why do we have this special case?

 \rightarrow The data is noisy. Even if we know the values of all the features, we still cannot make a deterministic decision. Perhaps, the outcome is influenced by a feature that we don't observe.

What are some possible ways of handling this case?

Predict the majority class.

Predict the labels probabilistically.

CS 486/686: Intro to AlLecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen24 / 46

Consider the revised training set below.

Day	Outlook	Temp	Humidity	Wind	Tennis?
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No
15	Sunny	Hot	High	Weak	No

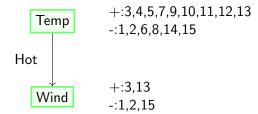
CS 486/686: Intro to AILecturer: Yuntian Deng

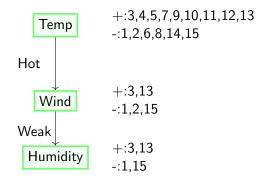
Slides: Alice Gao / Blake Vanberlo / Wenhu Chen25 / 46

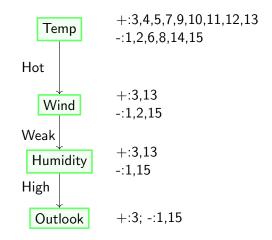
Complete the branch of the tree where

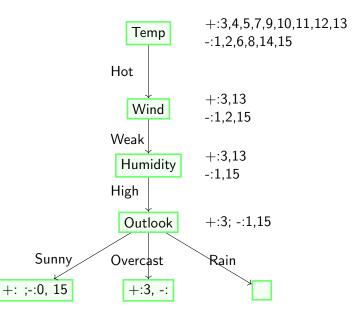
Temp = Hot, Wind = Weak, and Humidity = High.

CS 486/686: Intro to AlLecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen26 / 46









CS 486/686: Intro to AlLecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen27 / 46

No examples left

Why do we have this special case?

 \rightarrow A combination of features is not present in the training set. If we never observe this combination, we don't know how to predict it.

What are some possible ways of handling this case?

 \rightarrow Use the majority decision in the examples at the parent node.

Examples of Decision Trees

Definition and Classifying an Example

Grow a Full Tree

Decision Tree Learning Algorithm

Determine the Order of Testing Features

CS 486/686: Intro to AlLecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen29 / 46

The Decision Tree Learner algorithm

Algorithm 1 Decision Tree Learner (examples, features)

- 1: if all examples are in the same class then
- 2: return the class label.
- 3: else if no features left then
- 4: return the majority decision.
- 5: else if no examples left then
- 6: return the majority decision at the parent node.

7: **else**

- 8: choose a feature f.
- 9: for each value v of feature f do
- 10: build edge with label v.
- 11: build sub-tree using examples where the value of f is v.

Which feature should we test at each step?

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen30 / 46

Learning the "best" decision tree

Each order of testing features leads to a different decision tree. Many decision trees can predict the training examples perfectly. Which tree do we prefer?

 \rightarrow We prefer the smallest tree, since a simple model is more likely to predict unseen data well.

Learning the "best" decision tree

Each order of testing features leads to a different decision tree. Many decision trees can predict the training examples perfectly. Which tree do we prefer?

 \rightarrow We prefer the smallest tree, since a simple model is more likely to predict unseen data well.

How many possible decision trees are there?

How do we find the smallest decision tree?

 \rightarrow A lot. Can represent all discrete functions of features. Cannot do systematic search. Intractable to find the optimal order of testing features.

Do greedy search.

Greedy search: make the myopic best decision at each step. (Best for that step, may not be best for minimizing the tree)

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen31 / 46

Examples of Decision Trees

Definition and Classifying an Example

Grow a Full Tree

Decision Tree Learning Algorithm

Determine the Order of Testing Features

CS 486/686: Intro to AlLecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen32 / 46

Which feature should we test at each step?

How can we create a shallow/small tree? Need to minimize the number of tests.

Finding the optimal order of testing features is difficult.
 Greedy search — make the best myopic choice at each step.

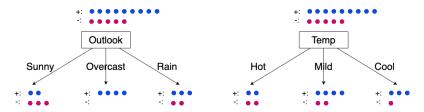
 At each step, test a feature that makes the biggest difference to the classification.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen33 / 46

Which feature should we test?

Which of the two features below should we test?

- (A) Outlook
- (B) Temp

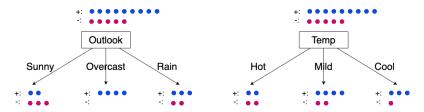


CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen34 / 46

Which feature should we test?

Which of the two features below should we test?

- (A) Outlook
- (B) Temp



 \rightarrow (A) We should test Outlook since it reduces uncertainty more than Temp.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen34 / 46

Identifying the most important feature

- ► We want to make a decision as soon as possible → reduce uncertainty as much as possible
- Information content of a feature
 = uncertainty before testing the feature
 uncertainty after testing the feature
- Measure uncertainty using the notion of entropy.

Given a distribution $P(c_1), ..., P(c_k)$ over k outcomes $c_1, ..., c_k$, the **entropy** of the distribution is

$$I(P(c_1), ..., P(c_k)) = -\sum_{i=1}^k P(c_i) \log_2(P(c_i))$$

 \rightarrow Base 2 since we measure info content in bits.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen35 / 46

Q: Entropy of a distribution over two outcomes

Q #1: What is the entropy of the distribution (0.5, 0.5)?

$$I(P(c_1), ..., P(c_k)) = -\sum_{i=1}^{k} P(c_i) \log_2(P(c_i))$$

(A) 0.2

- **(B)** 0.4
- (C) 0.6
- (D) 0.8
- (E) 1

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen36 / 46

Q: Entropy of a distribution over two outcomes

Q #1: What is the entropy of the distribution (0.5, 0.5)?

$$I(P(c_1), ..., P(c_k)) = -\sum_{i=1}^k P(c_i) \log_2(P(c_i))$$

(A) 0.2

- **(B)** 0.4
- (C) 0.6
- (D) 0.8

(E) 1

 $\rightarrow I(0.5, 0.5) = -\frac{1}{2}log_2(1/2) - \frac{1}{2}log_2(1/2) = 1.$

There is one bit of uncertainty in this distribution. There is a lot of uncertainty in this distribution. CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen36 / 46

Q: Entropy of a distribution over two outcomes Q #2: What is the entropy of the distribution (0.01, 0.99)?

$$I(P(c_1), ..., P(c_k)) = -\sum_{i=1}^{k} P(c_i) \log_2(P(c_i))$$

(A) 0.02

(B) 0.04

(C) 0.06

(D) 0.08

(E) 0.1

CS 486/686: Intro to AlLecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen37 / 46

Q: Entropy of a distribution over two outcomes

Q #2: What is the entropy of the distribution (0.01, 0.99)?

$$I(P(c_1), ..., P(c_k)) = -\sum_{i=1}^k P(c_i) \log_2(P(c_i))$$

(A) 0.02

- (B) 0.04
- (C) 0.06

(D) 0.08

(E) 0.1

 $\rightarrow I(0.99, 0.01) = -0.99 \log_2(0.99) - 0.01 \log_2(0.01) = 0.08.$

There is 0.08 bits of uncertainty in this distribution.

There is very little uncertainty in this distribution. We almost know for sure that the outcome will be the second one. CS 486/686: Intro to AlLecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen37 / 46 Entropy of a distribution over two outcomes

Consider a distribution (p, 1-p) where $0 \le p \le 1$.

What is the maximum entropy of this distribution?

 \rightarrow maximum is at p = 1/2.

What is the minimum entropy of this distribution?
 → minimum is at p = 0 and p = 1.
 By definition I(1,0) = 0 and I(0,1) = 0.

▶ Plot the entropy of the distribution (p, 1 − p) with respect to p.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen38 / 46

Expected information gain of testing a feature

• The feature has k values $v_1, ..., v_k$.

Before testing the feature, we have p positive and n negative examples.

After testing the feature, for each value v_i of the feature, we have p_i positive and n_i negative examples.

Let's calculate the expected information gain of testing this feature.

Expected information gain of testing a feature

Entropy before testing the feature:

 \rightarrow

$$H_{before} = I\left(\frac{p}{p+n}, \frac{n}{p+n}\right)$$

Expected entropy after testing the feature:

$$H_{after} = \sum_{i=1}^{k} \frac{p_i + n_i}{p + n} * I\left(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i}\right)$$

Expected information gain (entropy reduction) is

$$InformationGain = H_{before} - H_{after}$$

 \rightarrow can be generalized to more than two classes as well. CS 486/686: Intro to AlLecturer: Yuntian Deng Siides: Alice Gao / Blake Vanberlo / Wenhu Chen40 / 46

Q #3: What is the entropy of the examples before we select a feature for the root node of the tree?

$$I(P(c_1), ..., P(c_k)) = -\sum_{i=1}^k P(c_i) \log_2(P(c_i))$$
$$H_{before} = I\left(\frac{p}{p+n}, \frac{n}{p+n}\right)$$

(A) 0.54

(B) 0.64

(C) 0.74

(D) 0.84

(E) 0.94

Day	Outlook	Temp	Humidity	Wind	Tennis?
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

CS 486/686: Intro to AlLecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen41 / 46

Q #3: What is the entropy of the examples before we select a feature for the root node of the tree?

$$I(P(c_1), ..., P(c_k)) = -\sum_{i=1}^k P(c_i) \log_2(P(c_i))$$
$$H_{before} = I\left(\frac{p}{p+n}, \frac{n}{p+n}\right)$$

(A) 0	.54
-------	-----

(B) 0.64

(C) 0.74

(D) 0.84

(E) 0.94

Day	Outlook	Temp	Humidity	Wind	Tennis?
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

 \rightarrow Correct answer is 0.940 (E).

CS 486/686: Intro to AILecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen41 / 46

Q #4: What is the expected information gain if we select **Outlook** as the root node of the tree?

$$I(P(c_1), \dots, P(c_k)) = -\sum_{i=1}^k P(c_i) \log_2(P(c_i))$$
$$H_{before} = I\left(\frac{p}{p+n}, \frac{n}{p+n}\right)$$
$$H_{after} = \sum_{i=1}^k \frac{p_i + n_i}{p+n} * I\left(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i}\right)$$

- (A) 0.237
- (B) 0.247

(C) 0.257

(D) 0.267

(E) 0.277

Day	Outlook	Temp	Humidity	Wind	Tennis?
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

CS 486/686: Intro to AILecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen42 / 46

Q #4: What is the expected information gain if we select **Outlook** as the root node of the tree?

$$I(P(c_1), \dots, P(c_k)) = -\sum_{i=1}^k P(c_i) \log_2(P(c_i))$$
$$H_{before} = I\left(\frac{p}{p+n}, \frac{n}{p+n}\right)$$
$$H_{after} = \sum_{i=1}^k \frac{p_i + n_i}{p+n} * I\left(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i}\right)$$

(A) 0.237

(B) 0.247

(C) 0.257

(D) 0.267

(E) 0.277

 \rightarrow Correct answer is 0.247 (B).

Outlook Temp Humidity Wind Tennis? Dav 1 Sunny Hot High Weak No No Sunny Hot High Strong 3 Hot High Weak Yes Overcast Mild Yes 4 Rain High Weak Cool Normal Weak Yes 5 Rain Rain Cool Strong No 6 Normal Yes 7 Overcast Cool Normal Strong No 8 Sunny Mild High Weak Cool Weak Yes 9 Sunny Normal 10 Mild Weak Yes Rain Normal 11 Sunny Normal Strong Yes 12 Overcast Mild High Strong Yes 13 Overcast Hot Normal Weak Yes 14 Rain Mild High Strong No

CS 486/686: Intro to AILecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen42 / 46

Q #5: What is the expected information gain if we select **Humidity** as the root node of the tree?

$$I(P(c_1), \dots, P(c_k)) = -\sum_{i=1}^k P(c_i) \log_2(P(c_i))$$
$$H_{before} = I\left(\frac{p}{p+n}, \frac{n}{p+n}\right)$$
$$H_{after} = \sum_{i=1}^k \frac{p_i + n_i}{p+n} * I\left(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i}\right)$$

- (A) 0.151
- (B) 0.251

(C) 0.351

(D) 0.451

(E) 0.551

Day	Outlook	Temp	Humidity	Wind	Tennis?
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

CS 486/686: Intro to AlLecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen43 / 46

Q #5: What is the expected information gain if we select **Humidity** as the root node of the tree?

$$I(P(c_1), \dots, P(c_k)) = -\sum_{i=1}^k P(c_i) \log_2(P(c_i))$$
$$H_{before} = I\left(\frac{p}{p+n}, \frac{n}{p+n}\right)$$
$$H_{after} = \sum_{i=1}^k \frac{p_i + n_i}{p+n} * I\left(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i}\right)$$

- (A) 0.151
- (B) 0.251
- (C) 0.351
- (D) 0.451
- (E) 0.551

 \rightarrow Correct answer is 0.151 (A). CS 486/686: Intro to AlLecturer: Yuntian Deng

Outlook Temp Humidity Wind Tennis? Dav 1 Sunny Hot High Weak No No Sunny Hot High Strong 3 Weak Yes Overcast Hot High Yes 4 Rain Mild High Weak Cool Normal Weak Yes 5 Rain Cool Strong No 6 Rain Normal 7 Overcast Cool Normal Strong Yes No 8 Sunny Mild High Weak Cool Weak Yes 9 Sunny Normal 10 Mild Weak Yes Rain Normal 11 Sunny Mild Normal Strong Yes 12 Overcast Mild High Strong Yes 13 Overcast Hot Normal Weak Yes 14 Rain Mild High Strong No

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen43 / 46

Q: Which feature should we pick to build the tree?

Q #6: Which feature should we use to build the tree? If Humidity could decrease the entropy to 0.48 and Outlook could decrease the entropy to 0.77.

- (A) Using Humidity is better
- (B) Using Outlook is better
- (C) They are equivalent

Q: Which feature should we pick to build the tree?

Q #6: Which feature should we use to build the tree? If Humidity could decrease the entropy to 0.48 and Outlook could decrease the entropy to 0.77.

- (A) Using Humidity is better
- (B) Using Outlook is better
- (C) They are equivalent

 \rightarrow Correct answer is Humidity is better (A).

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen44 / 46

ID3 Algorithm

- Calculate the entropy of every attribute a of the data set S
- Partition ("split") the set S into subsets using the attribute for which the resulting entropy after splitting is minimized; or, equivalently, information gain is maximum.
- Make a decision tree node containing that attribute.
- Recurse on subsets using the remaining attributes.

Revisiting Learning Goals

Describe the components of a decision tree.

- Construct a decision tree given an order of testing the features.
- Determine the prediction accuracy of a decision tree on a test set.
- Compute the entropy of a probability distribution.
- Compute the expected information gain for selecting a feature.
- Trace the execution of and implement the algorithm for learning a decision tree.