Unsupervised Learning

Yuntian Deng Lecture 17

Readings: RN 21.7.1, PM 10.2, GBC 14.1, 20.10.4

CS 486/686: Intro to AI Lecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 1 / 37

Outline

Learning Goals

Introduction of Unsupervised Learning

k-Means Clustering

Dimension Reduction Methods

Autoencoders

Generative Adversarial Networks

Revisiting Learning Goals

CS 486/686: Intro to AI Lecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 2 / 37

Learning Goals

- Understanding what is unsupervised Learning
- Understanding K-Means clustering algorithm
- Knowing how to perform PCA
- Understanding the basic idea of Auto-Encoder and GAN

Learning Goals

Introduction of Unsupervised Learning

k-Means Clustering

Dimension Reduction Methods

Autoencoders

Generative Adversarial Networks

Revisiting Learning Goals

CS 486/686: Intro to AI Lecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 4 / 37

Unsupervised Learning Tasks

2 major types of tasks:

- Representation learning: learning low-dimensional representations of examples
- Generative modelling: learning probability distribution from which new examples can be drawn as samples

Unsupervised Learning - Clustering

Clustering is a common unsupervised representation learning task

- \rightarrow Goal is to group training examples into $\mathit{clusters.}$
- \rightarrow Clusters can be thought of as classes/categories.

CS 486/686: Intro to AI Lecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 6 / 37

Unsupervised Learning - Clustering

2 types of clustering tasks

► Hard clustering: each example is assigned to 1 cluster with certainty → class(x) = c

 Soft clustering: each example has a probability distribution over all clusters
→ class(x) ~ P(C|x) Learning Goals

Introduction of Unsupervised Learning

k-Means Clustering

Dimension Reduction Methods

Autoencoders

Generative Adversarial Networks

Revisiting Learning Goals

CS 486/686: Intro to AI Lecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 8 / 37

k-Means Clustering - Overview

- A hard clustering algorithm
- Learns to definitively assign examples to classes
- Input: number of clusters k, training examples X
- ▶ Goal is to learn a representation that assigns examples to the appropriate class $c \in \{1, 2, ..., k\}$

k-Means Clustering - Centroids

Suppose each example contains n features: $x = \langle x_1, x_2, \ldots, x_n \rangle$

Each feature x_j is real-valued.

 $k\mbox{-Means}$ learns a centroid for each cluster and assigns examples to the closest centroid

By "closest" we mean the centroid that is the shortest distance from x

▶ Need to define a distance function d(c, x)→ E.g. Euclidean distance (L2): $d(c, x) = \sqrt{\sum_{j=1}^{n} (c_j - x_j)^2}$

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen10 / 37

k-Means Clustering - Centroids

Example: k = 3, $x = \langle x_1, x_2 \rangle$

CS 486/686: Intro to AlLecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen11 / 37

k-Means Clustering - Algorithm Overview

k-means alternates between 2 steps:

- 1. *Centroid update:* Set the centroid of each cluster as the feature-wise mean of each example currently assigned to the cluster.
- 2. *Cluster assignment:* Assign each training example x to the cluster with the closest centroid.

k-Means Clustering - Algorithm

Input: $X \in \mathbb{R}^{m \times n}, k \in \mathbb{N}, d(c, x)$

1. Initialization:

Randomly initialize k centroids: $C \in \mathbb{R}^{k \times n}$

- 2. While not converged, do:
 - Assign each example to the cluster whose centroid is closest. $Y[i] \leftarrow \arg\min_c d(C[c], X[i])$
 - Calculate the centroid for each cluster c by calculating the average feature value for each exmaple currently classified as cluster c.

 $C[c] \leftarrow \frac{1}{n_c} \sum_{j=1}^{n_c} X_c[j]$

Visualization of Clustering Algorithm

The clustering algorithm visualization:

Demonstration of the standard algorithm

 k initial "means" (in this case k=3) are randomly generated within the data domain (shown in color). 2. k clusters are created by associating every observation with the nearest mean. The partitions here represent the Voronoi diagram generated by the means. 3. The centroid of each of the k clusters becomes the new mean.

 Steps 2 and 3 are repeated until convergence has been reached.

CS 486/686: Intro to AlLecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen14 / 37

k-Means Clustering - Example Iteration

Let's perform 1 iteration of k-means with k = 2, using Euclidean distance. Use the following dataset:

x_1 ,	x_2	x_3
0.2	0.5	0
-0.6	2.1	1.2
-0.5	1.9	1.3
0.1	0.5	-0.3
	x_1 , -0.6 -0.5 0.1	$\begin{array}{cccc} x_1, & x_2 \\ \hline 0.2 & 0.5 \\ -0.6 & 2.1 \\ -0.5 & 1.9 \\ \hline 0.1 & 0.5 \end{array}$

Assume the current values for the centroids are as follows:

c	c_1 ,	c_2	c_3
1	0.3	0.8	-0.5
2	-0.1	-0.5	1.0

CS 486/686: Intro to AlLecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen15 / 37

k-Means Clustering - Example Iteration

Let's perform 1 iteration of k-means with k = 2, using Euclidean distance. Use the following dataset:

Example	x_1 ,	x_2	x_3
1	0.2	0.5	0
2	-0.6	2.1	1.2
3	-0.5	1.9	1.3
4	0.1	0.5	-0.3

c1 = [0.3, 0.8, -0.5], c2 = [-0.1, -0.5, 1.0]

Example 1 to $c1: 0.1^2 + 0.3^2 + 0.5^2$, to $c2: 0.3^2 + 1.0^2 + 1.0^2$: c1Example 2 to $c1: 0.9^2 + 1.3^2 + 1.7^2$, to $c2: 0.4^2 + 2.6^2 + 0.2^2$: c1Example 3 to $c1: 0.8^2 + 1.1^2 + 1.8^2$, to $c2: 0.4^2 + 2.4^2 + 0.3^2$: c1Example 4 to $c1: 0.2^2 + 0.3^2 + 0.2^2$, to $c2: 0.2^2 + 1.0^2 + 1.3^2$: c1

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen16 / 37

k-Means Clustering - Example Iteration

Let's perform 1 iteration of k-means with k = 2, using Euclidean distance. Use the following dataset:

Example	x_1 ,	x_2	x_3
1	0.2	0.5	0
2	-0.6	2.1	1.2
3	-0.5	1.9	1.3
4	0.1	0.5	-0.3

Computing the new centroid:

 $c1 = [0.2, 1.25, 0.55] \ c2 = []$

 \rightarrow ou need to re-initialize the centroid.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen17 / 37

k-Means Clustering - Finding the Best Solution

- k-means is guaranteed to converge (with L2 distance)
- Solution not guaranteed to be optimal
- To increase chance of finding better solution, you could:
 - Run multiple times with different random initial cluster assignments
 - Scale the features so that their domains are similar

k-Means Clustering - Choosing proper k

The choice of k greatly determines the outcome of the clustering.

- ► As long as there are ≤ k + 1 examples, running k-means with k + 1 clusters will result in lower error than running with k clusters
- But using too large k will defeat the point of representation learning...

k-Means Clustering - The Elbow Method

- 1. Execute k-means with multiple values of $k \in \{1, 2, \dots, k_{max}\}$.
- 2. Plot average distance across all examples and assigned clusters.
- 3. Select k where there is drastic reduction in error improvement on the plot (i.e. "elbow point")

 \rightarrow Can be ambiguous, since it is manual

CS 486/686: Intro to AlLecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen20 / 37

k-Means Clustering - Silhouette Analysis

- 1. Execute k-means with multiple values of $k \in \{1, 2, \dots, k_{max}\}$.
- 2. Calculate average silhouette score $\boldsymbol{s}(\boldsymbol{x})$ for each \boldsymbol{k} across the dataset
- 3. Select k that maximizes average s(x)

$$s(x) = \begin{cases} \frac{b(x) - a(x)}{\max(a(x), b(x))} & \text{if } |C_x| > 1\\ 0 & \text{if } |C_x| = 1 \end{cases}$$

- a(x) is the average distance from example x to all other examples in its own cluster
- b(x) is the smallest of the average distance of x to examples in any other cluster

 \rightarrow Significantly more objective than the Elbow Method cs 486/686: Intro to AlLecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen21 / 37

Learning Goals

Introduction of Unsupervised Learning

k-Means Clustering

Dimension Reduction Methods

Autoencoders

Generative Adversarial Networks

Revisiting Learning Goals

CS 486/686: Intro to AILecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen22 / 37

Dimensionality reduction simply refers to the process of reducing the number of attributes in a dataset while keeping as much of the variation in the original dataset as possible.

- High Dimension Data actually resides in an inherent low-dimensional space.
- Additional dimensions are just random noise.
- Goal is to recover these inherent dimension and discard noise dimension.

Dimension Reduction

The observed data point dimensionality is not necessarily the intrinsic dimension of the data.

By finding the intrinsic dimension, the problem becomes simpler.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen24 / 37

Principal Component Analysis

- Widely used method for unsupervised dimensionality reduction
- account for variance of data in as few dimensions as possible
- First PC is the project of direction that maximizes the variance of projected data
- Second PC is the project of direction that is orthogonal to the first PC that maximizes the variance of projected data

CS 486/686: Intro to AlLecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen25 / 37

Principal Component Analysis

- Mean center the data
- Compute Covariance Matrix Σ
- Calculate the eigen values and eigen vectors of Σ
 - Eigenvector with largest eigen value λ₁ is the first PC
 - Eigenvector with k_{th} largest eigenvaluve λ_k is the k-th PC.
 - $\lambda_k / \sum_k \lambda_k$ is the proportion of variance captured by k-th PC.

Learning Goals

Introduction of Unsupervised Learning

k-Means Clustering

Dimension Reduction Methods

Autoencoders

Generative Adversarial Networks

Revisiting Learning Goals

CS 486/686: Intro to AILecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen27 / 37

Autoencoders - Overview

- A representation learning algorithm
- Learn to map examples to low-dimensional representation

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen28 / 37

Autoencoders - Components

2 main components

- 1. Encoder e(x): maps x to low-dimensional representation \hat{z}
- 2. Decoder $d(\hat{z})$: maps \hat{z} to its original representation x

Autoencoder implements $\hat{x} = d(e(x))$

- \hat{x} is the *reconstruction* of original input x
- Encoder and decoder learned such that ẑ contains as much information about x as needed to reconstruct it

Minimize sum of squares of differences between input and prediction:

$$E = \sum_{i} (x_i - d(e(x_i)))^2$$

CS 486/686: Intro to AILecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen29 / 37

Linear Autoencoders

Simplest form of autoencoder

 \blacktriangleright e and d are linear functions with shared weight matrix W

 $\hat{z} = Wx$ $\hat{x} = W^{\top}\hat{z}$

CS 486/686: Intro to AlLecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen30 / 37

Deep Neural Network Autoencoders

- Good for complex inputs
- \blacktriangleright e and d are feedforward neural networks, joined in series
- Train with backpropagation

CS 486/686: Intro to AlLecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen31 / 37

Learning Goals

Introduction of Unsupervised Learning

k-Means Clustering

Dimension Reduction Methods

Autoencoders

Generative Adversarial Networks

Revisiting Learning Goals

CS 486/686: Intro to AILecturer: Yuntian Deng

Slides: Alice Gao / Blake Vanberlo / Wenhu Chen32 / 37

Generative Adversarial Networks - Overview

a.k.a. GANs

- A generative unsupervised learning algorithm
- Goal is to generate unseen examples that look like training examples

GANs are actually a pair of neural networks:

- ► Generator g(z): Given vector z in latent space, produces example x drawn from a distribution that approximates the true distribution of training examples → z usually sampled from a Gaussian distribution
- Discriminator d(x): A classifier that predicts whether x is real (from training set) or fake (made by g)

GANs - Illustrative Example

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen35 / 37

GANs - Training

GANs are trained with a minimax error:

$$E = \mathbb{E}_x[\log(d(x))] + \mathbb{E}_z[\log(1 - d(g(z)))]$$

Discriminator tries to maximize E

Generator tries to minimize E

GANs - Training

GANs are trained with a minimax error:

$$E = \mathbb{E}_x[\log(d(x))] + \mathbb{E}_z[\log(1 - d(g(z)))]$$

- Discriminator tries to maximize E
- Generator tries to minimize E

After convergence:

- g should be producing realistic images
- d should output $\frac{1}{2}$, indicating maximal uncertainty

CS 486/686: Intro to Al Lecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen36 / 37

Revisiting Learning Goals

- Understanding what is unsupervised Learning
- Understanding K-Means clustering algorithm
- Knowing how to perform PCA
- Understanding the basic idea of Auto-Encoder and GAN