
Reinforcement Learning

Yuntian Deng

Lecture 15

Readings: RN 22.1 - 21.3. PM 12.1, 12.5, 12.8.

CS 486/686: Intro to AI Lecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 1 / 42

Outline

Learning Goals

Introduction to Reinforcement Learning

Passive Adaptive Dynamic Programming

Active Adaptive Dynamic Programming

Temporal Difference Error

Q-Learning

SARSA

CS 486/686: Intro to AI Lecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 2 / 42

Learning Goals

▶ Trace and implement the passive adaptive dynamic
programming algorithm.

▶ Explain the trade-off between exploration and exploitation.

▶ Trace and implement the active adaptive dynamic
programming algorithm.

▶ Trace and implement the active Q-learning.

▶ Trace and implement the active SARSA.

▶ Understand the on-policy and off-policy RL.

CS 486/686: Intro to AI Lecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 3 / 42

Learning Goals

Introduction to Reinforcement Learning

Passive Adaptive Dynamic Programming

Active Adaptive Dynamic Programming

Temporal Difference Error

Q-Learning

SARSA

CS 486/686: Intro to AI Lecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 4 / 42

A Reinforcement Learning Agent

Let’s consider fully observable, single-agent reinforcement learning.
We will formalize this problem as a Markov decision process.

▶ Given the set of possible states S and the set of actions A.

▶ Observes the state and the rewards received.

▶ Carries out an action.

▶ Goal is to maximize its discounted reward (i.e. return).

Why is reinforcement learning challenging?

▶ Which action was responsible for this reward/punishment?

▶ How will this action impact my utility?

▶ Should I explore or exploit?

CS 486/686: Intro to AI Lecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 5 / 42

Learning Goals

Introduction to Reinforcement Learning

Passive Adaptive Dynamic Programming

Active Adaptive Dynamic Programming

Temporal Difference Error

Q-Learning

SARSA

CS 486/686: Intro to AI Lecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 6 / 42

Passive Learning Agent

▶ Fix a policy π.

▶ Goal is to learn V π(s) (expected value of π for state s).

▶ Similar to policy evaluation.

▶ Does not know the transition model P (s′|s, a)
nor the reward function R(s).

▶ Solution: Adaptive Dynamic Programming

▶ Learn P (s′|s, a) and R(s) using the observed transitions and
rewards.

▶ Learn V π(s) by solving Bellman equations (exactly or
iteratively).

V π(s) =R(s) + γ
∑
s′

P (s′|s, π(s))V π(s′).

▶ A model-based approach - uses model of environment

CS 486/686: Intro to AI Lecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 7 / 42

Passive ADP Algorithm

1. Repeat steps 2 to 5.

2. Follow policy π and generate an experience ⟨s, a, s′, r⟩.

3. Update reward function: R(s)← r

4. Update the transition probability.

N(s, a) = N(s, a) + 1

N(s, a, s′) = N(s, a, s′) + 1

P (s′|s, a) = N(s, a, s′)/N(s, a)

5. Derive V π(s) by using the Bellman equations.

V (s) = R(s) + γ
∑
s′

P (s′|s, π(s))V (s′)

CS 486/686: Intro to AI Lecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 8 / 42

Passive ADP Example

s11 +1

s21 −1

▶ π(s11) = down, π(s21) = right

▶ γ = 0.9

▶ R(s11) = −0.04, R(s21) = −0.04, R(s12) = 1, R(s22) = −1

▶ N(s, a) = 5, ∀s, a.

▶ N(s, a, s′) = 3 for the intended direction.

▶ N(s, a, s′) = 1 for a direction to the left or right of the
intended direction.

▶ The current state is s11.

▶ We take an action to go ‘down’, and we actually land in s21

CS 486/686: Intro to AI Lecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 9 / 42

Passive ADP Example continued

s11 +1

s21 −1

1. No need to update the reward function.

2. Update the counts.

N(s11, down) = 6 and N(s11, down, s21) = 4.

3. Solve the Bellman equations.

V (s11) = −0.04 + 0.9(0.667V (s21) + 0.167(1) + 0.167V (s11))

V (s21) = −0.04 + 0.9(0.6(−1) + 0.2V (s11) + 0.2V (s21))

The solutions are:

V (s11) = −0.4378, V (s21) = −0.8034

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen10 / 42

Q: Updating the transition probabilities

Q #1: Suppose the agent is in state s23. Presently,
N(s23, down) = 23 and N(s23, down, s24) = 2.

The agent tries to move down, but accidentally moves right. After
this experience, what is P (s24|s23, down)?

1 2 3 4

1

2 X -1

3 +1

(A) 0.087

(B) 0.1

(C) 0.125

(D) 0.13

(E) 0.667

→ Correct answer is (C). P (s24|s23, down) = 3/24 = 0.125.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen11 / 42

Q: Updating the transition probabilities

Q #1: Suppose the agent is in state s23. Presently,
N(s23, down) = 23 and N(s23, down, s24) = 2.

The agent tries to move down, but accidentally moves right. After
this experience, what is P (s24|s23, down)?

1 2 3 4

1

2 X -1

3 +1

(A) 0.087

(B) 0.1

(C) 0.125

(D) 0.13

(E) 0.667

→ Correct answer is (C). P (s24|s23, down) = 3/24 = 0.125.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen11 / 42

Learning Goals

Introduction to Reinforcement Learning

Passive Adaptive Dynamic Programming

Active Adaptive Dynamic Programming

Temporal Difference Error

Q-Learning

SARSA

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen12 / 42

Active ADP

The passive ADP agent learns the expected value of a fixed policy.

What action should the agent take at each step?
Two things are useful for the agent to do:

1. exploit: take an action that maximizes V (s).

2. explore: take an action that is different from the optimal one.

→ Actions serve two purposes: (1) provide rewards,
(2) gather more data to learn better model. (long-term benefits)

The greedy agent seldom converges to the optimal policy and
sometimes converges to horrible policies because the learned model
is not the same as the true environment.

There is a trade-off between exploitation and exploration.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen13 / 42

Tradeoff Between Exploitation and Exploration

1. ϵ-greedy exploration strategy:

▶ Select random action with probability ϵ, and

▶ Select the best action with probability 1− ϵ.

▶ We can decrease ϵ over time.

2. Softmax selection using Gibbs/Boltzmann distribution.

▶ Choose action a with probability
eQ(s,a)/T∑
a e

Q(s,a)/T
.

▶ T > 0 is the temperature. When T is high, the distribution is
close to uniform. When T is low, the higher-valued actions
have higher probabilities.

3. Initialize the values optimistically to encourage exploration.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen14 / 42

Optimistic Utility Values to Encourage Exploration

We will learn V +(s) (the optimistic estimates of V (s)).

V +(s)← R(s) + γmax
a

f

(∑
s′

P (s′|s, a)V +(s′), N(s, a)

)

f(u, n) =

{
R+, if n < Ne

u, otherwise

f(u, n) trade-offs exploitation and exploration.

▶ R+ is the optimistic estimate of the best possible reward
obtainable in any state.

▶ If we haven’t visited (s, a) at least Ne times, assume its
expected value is R+. → Make state attractive for
exploration initially.

▶ Otherwise, use the current utility value (V +(s)).

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen15 / 42

Active ADP Algorithm

1. Initialize R(s), V +(s), N(s, a), N(s, a, s′).

2. Repeat steps 3 to 7 until we have visited each (s, a)
at least Ne times and the V +(s) values converged.

3. Determine the best action a for current state s using V +(s).

a = argmax
a

f

(∑
s′

P (s′|s, a)V +(s′), N(s, a)

)
, f(u, n) =

{
R+, if n < Ne

u, otherwise

4. Take action a and generate an experience ⟨s, a, s′, r⟩

5. Update reward function: R(s)← r

6. Update the transition probability.

N(s, a) = N(s, a) + 1, N(s, a, s′) = N(s, a, s′) + 1

P (s′|s, a) = N(s, a, s′)/N(s, a)

7. Update V +(s) using the Bellman updates.

V +(s)← R(s) + γmax
a

f

(∑
s′

P (s′|s, a)V +(s′), N(s, a)

)
CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen16 / 42

An Active ADP Example

s11 +1

s21 −1

▶ π(s11) = down, π(s21) = right

▶ γ = 0.9

▶ Ne = 10, R+ = 5.

▶ R(s11) = −0.04, R(s21) = −0.04, R(s12) = 1, R(s22) = −1
▶ N(s, a) = 5,∀s, a.
▶ N(s, a, s′) = 3 for the intended direction.

▶ N(s, a, s′) = 1 for any other direction with positive transition
probability.

The current estimates:

V +(s11) = −0.6573, V +(s21) = −0.9002

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen17 / 42

Learning Goals

Introduction to Reinforcement Learning

Passive Adaptive Dynamic Programming

Active Adaptive Dynamic Programming

Temporal Difference Error

Q-Learning

SARSA

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen18 / 42

Bellman Equations for Q(s, a)

Q(s, a) is the expected value of performing action a in state s.
We can define Bellman equations for both V (s) and Q(s, a).

Bellman equations for V (s):

V (s) = R(s) + γmax
a

∑
s′

P (s′|s, a)V (s′)

Bellman equations for Q(s, a):

Q(s, a) = R(s) + γ
∑
s′

P (s′|s, a)max
a′

Q(s′, a′)

Learning V (s) and Q(s, a) are equivalent!
What is the advantage of learning Q(s, a)?

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen19 / 42

Temporal Difference Error
Assume that we observed ⟨s1, a, r1, s2⟩.
Based on this transition, what should Q(s1, a) satisfy?

Start with the Bellman equations for Q(s1, a).

Q(s, a) = R(s) + γ
∑
s′

P (s′|s, a)max
a′

Q(s′, a′)

Q(s1, a) should be computed by the RHS of the above equation.
Assume that this transition always occurs (P (s2|s1, a) = 1).
Thus, Q(s1, a) should be

R(s1) + γmax
a′

Q(s2, a
′)

Temporal difference (TD) error:

(R(s1) + γmax
a′

Q(s2, a
′))−Q(s1, a)

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen20 / 42

Learning Goals

Introduction to Reinforcement Learning

Passive Adaptive Dynamic Programming

Active Adaptive Dynamic Programming

Temporal Difference Error

Q-Learning

SARSA

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen21 / 42

Q-Learning Updates

Given an experience ⟨s, a, s′, r⟩, update Q(s, a) as follows:

Q(s, a)← Q(s, a) + α

(
R(s) + γmax

a′
Q(s′, a′)−Q(s, a)

)

An alternative version:

Q(s, a)← (1− α)Q(s, a) + α

(
R(s) + γmax

a′
Q(s′, a′)

)

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen22 / 42

Passive Q-Learning Algorithm

1. Repeat steps 2 to 4.

2. Follow policy π and generate an experience ⟨s, a, s′, r⟩.

3. Update reward function: R(s)← r

4. Update Q(s, a) by using the temporal difference update rules:

Q(s, a)← Q(s, a) + α

(
R(s) + γmax

a′
Q(s′, a′)−Q(s, a)

)

The learning rate α:
α controls the size of each update. If α decreases as N(s, a)
increases, Q values will converge to the optimal values.
For example, α(N(s, a)) = 10

9+N(s,a) .

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen23 / 42

Active Q-Learning Algorithm

(with optimistic utilities for exploration)

1. Initialize R(s), Q(s, a), N(s, a).

2. Repeat steps 3 to 6 until we have visited each (s, a)
at least Ne times and the Q(s, a) values have converged.

3. Determine the best action a for current state s using V +(s).

a = argmax
a

f

(
Q(s, a), N(s, a)

)
, f(u, n) =

{
R+, if n < Ne

u, otherwise

4. Take action a and generate an experience ⟨s, a, s′, r⟩

5. Update reward function: R(s)← r

6. Update Q(s, a) using the temporal difference update rules.

Q(s, a)← Q(s, a) + α

(
R(s) + γmax

a′
Q(s′, a′)−Q(s, a)

)
CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen24 / 42

Active Q-Learning Algorithm

(with ϵ-greedy for exploration)

1. Initialize R(s), Q(s, a), ϵ.

2. Repeat steps 3 to 6 until the Q(s, a) values have converged.

3. Determine the action a for the current state:

a =

{
random action, with probability ϵ

argmaxa Q(s, a),with probability 1− ϵ

4. Take action a and generate an experience ⟨s, a, s′, r⟩

5. Update reward function: R(s)← r

6. Update Q(s, a) using the temporal difference update rules.

Q(s, a)← Q(s, a) + α

(
R(s) + γmax

a′
Q(s′, a′)−Q(s, a)

)

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen25 / 42

Active Q-Learning Algorithm
(with softmax sampling for exploration)

1. Initialize R(s), Q(s, a), T .

2. Repeat steps 3 to 6 until the Q(s, a) values have converged.

3. Determine the action a for the current state:

a ∼
〈
P (a0), P (a1), . . .

〉
=

〈
eQ(s,a0)/T , eQ(s,a1)/T , . . .

〉∑|A|−1
i=0 eQ(s,ai)/T

4. Take action a and generate an experience ⟨s, a, s′, r⟩

5. Update reward function: R(s)← r

6. Update Q(s, a) using the temporal difference update rules.

Q(s, a)← Q(s, a) + α

(
R(s) + γmax

a′
Q(s′, a′)−Q(s, a)

)
CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen26 / 42

Active Q-Learning: Example Iteration

Recall the grid world from previous lectures:

1 2 3 4

1

2 X -1

3 +1

On iteration i, the agent generates the following experience:
⟨s, a, s′, r⟩ = ⟨s32, right, s33,−0.04⟩

The current Q-values are as follows:
s11 s12 s13 s14 s21 s23 s31 s32 s33

up 0.1 0.2 0.25 0.3 0.27 0.3 0.3 0.55 0.4

right 0.1 0.15 0.2 0.32 0.39 -0.8 0.5 0.7 0.9

down 0.2 0.24 0.2 0.45 -0.8 0.4 0.45 0.5 0.8

left 0.1 0.15 0.22 0.2 0.27 0.05 0.3 0.4 0.5

Execute the Q-learning update. Say γ = 1 and α = 0.1.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen27 / 42

Properties of Q-Learning

1. Learns Q(s, a) instead of V (s).

2. Model-free: no need to learn the transition probabilities
P (s′|s, a).

3. Learns an approximation of the optimal Q-values
as long as the agent explores sufficiently.

4. The smaller α is, the closer it will converge to
the optimal Q-values, but the slower it will converge.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen28 / 42

ADP v.s. Q-Learning

1. Requires learning the transition probabilities?

→ ADP requires learning the transition probabilities.
Q-learning does not.

2. How much computation is performed per experience?

→ ADP requires more computation per experience. It tries to
maintain the consistency in the utility values between
neighbouring states using Bellman equations.

Q-learning requires less memory and computation time.

3. How fast does it learn?

→ ADP converges much faster than Q-learning. Q-learning
learns slower and shows much higher variability.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen29 / 42

ADP v.s. Q-Learning

1. Requires learning the transition probabilities?

→ ADP requires learning the transition probabilities.
Q-learning does not.

2. How much computation is performed per experience?

→ ADP requires more computation per experience. It tries to
maintain the consistency in the utility values between
neighbouring states using Bellman equations.

Q-learning requires less memory and computation time.

3. How fast does it learn?

→ ADP converges much faster than Q-learning. Q-learning
learns slower and shows much higher variability.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen29 / 42

ADP v.s. Q-Learning

1. Requires learning the transition probabilities?

→ ADP requires learning the transition probabilities.
Q-learning does not.

2. How much computation is performed per experience?

→ ADP requires more computation per experience. It tries to
maintain the consistency in the utility values between
neighbouring states using Bellman equations.

Q-learning requires less memory and computation time.

3. How fast does it learn?

→ ADP converges much faster than Q-learning. Q-learning
learns slower and shows much higher variability.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen29 / 42

Learning Goals

Introduction to Reinforcement Learning

Passive Adaptive Dynamic Programming

Active Adaptive Dynamic Programming

Temporal Difference Error

Q-Learning

SARSA

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen30 / 42

SARSA Updates

SARSA update rule: Given an experience ⟨s, a, r, s′, a′⟩,
update Q(s, a) as follows:

Q(s, a)← Q(s, a) + α

(
r + γQ(s′, a′)−Q(s, a)

)
where a′ is the actual action taken in state s′.

Q-learning update rule: Given an experience ⟨s, a, s′, r⟩,
update Q(s, a) as follows:

Q(s, a)← Q(s, a) + α

(
r + γmax

a′
Q(s′, a′)−Q(s, a)

)
where a′ is the optimal action in state s′ given current Q values.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen31 / 42

Active SARSA Algorithm

1. Initialize R(s), Q(s, a).

2. Repeat steps 3 to 8 until the Q(s, a) values have converged.

3. If starting new episode, determine a for initial state s0 using
current policy (determined by exploration strategy). s← s0.

4. Take action a and generate an experience ⟨s, a, r, s′⟩.

5. Update reward function: R(s)← r

6. Determine action a′ for state s′ using current policy.

7. Update Q(s, a) using the temporal difference update rules.

Q(s, a)← Q(s, a) + α

(
R(s) + γQ(s′, a′)−Q(s, a)

)

8. Update a← a′, s← s′.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen32 / 42

Active SARSA: Example Iteration

Recall the grid world from previous lectures:

1 2 3 4

1

2 X -1

3 +1

On iteration i, the agent generates the following experience:
⟨s, a, r, s′, a′⟩ = ⟨s13, down,−0.04, s23, right⟩

The current Q-values are as follows:
s11 s12 s13 s14 s21 s23 s31 s32 s33

up 0.1 0.2 0.25 0.3 0.27 0.3 0.3 0.55 0.4

right 0.1 0.15 0.2 0.32 0.39 -0.8 0.5 0.7 0.9

down 0.2 0.24 0.2 0.45 -0.8 0.4 0.45 0.5 0.8

left 0.1 0.15 0.22 0.2 0.27 0.05 0.3 0.4 0.5

Execute the SARSA update. Say γ = 1 and α = 0.1.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen33 / 42

Q-Learning vs. SARSA

▶ Q-learning is off-policy whereas SARSA is on-policy.

▶ For a greedy agent, they are the same.
If the agent explores, they are significantly different.

▶ Q-learning is more flexible: It learns to behave well even when
the exploration policy is random or adversarial.

▶ SARSA is more realistic: It can avoid exploration with large
penalties. It learns what will actually happen instead of what
the agent would like to happen.

▶ Q-learning is more appropriate for offline learning when the
agent does not explore. SARSA is more appropriate when the
agent explores.

▶ https://towardsdatascience.com/

intro-to-reinforcement-learning-temporal-difference-learning-sarsa-vs-q-learning-8b4184bb4978

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen34 / 42

https://towardsdatascience.com/intro-to-reinforcement-learning-temporal-difference-learning-sarsa-vs-q-learning-8b4184bb4978
https://towardsdatascience.com/intro-to-reinforcement-learning-temporal-difference-learning-sarsa-vs-q-learning-8b4184bb4978

Q: Q-learning vs. SARSA

Q #2: In a high-stakes online learning problem (e.g. self-driving
car), would it be better to use Q-learning or SARSA?

(A) Q-learning

(B) SARSA

(C) I don’t know

→ Correct answer is (B). SARSA is often more likely to learn less
risky policies.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen35 / 42

Q: Q-learning vs. SARSA

Q #2: In a high-stakes online learning problem (e.g. self-driving
car), would it be better to use Q-learning or SARSA?

(A) Q-learning

(B) SARSA

(C) I don’t know

→ Correct answer is (B). SARSA is often more likely to learn less
risky policies.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen35 / 42

Q: Q-learning vs. SARSA

Q #3: Which of the following is true?

(A) Q-learning is model-free and off-policy, while SARSA is
model-based and on-policy.

(B) Q-learning is model-based and off-policy, while SARSA is
model-free and on-policy.

(C) Q-learning is model-free and on-policy, while SARSA is
model-based and off-policy.

(D) Q-learning is model-based and on-policy, while SARSA is
model-free and off-policy.

(E) None of the above.

→ Correct answer is (E). Q-learning is off-policy and SARSA is
on-policy. Both are model-free.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen36 / 42

Q: Q-learning vs. SARSA

Q #3: Which of the following is true?

(A) Q-learning is model-free and off-policy, while SARSA is
model-based and on-policy.

(B) Q-learning is model-based and off-policy, while SARSA is
model-free and on-policy.

(C) Q-learning is model-free and on-policy, while SARSA is
model-based and off-policy.

(D) Q-learning is model-based and on-policy, while SARSA is
model-free and off-policy.

(E) None of the above.

→ Correct answer is (E). Q-learning is off-policy and SARSA is
on-policy. Both are model-free.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen36 / 42

SARSA vs Q-Learning

Let’s assume the Q function is:
1 2 3 4

1 Q13

2 X Q23 -1

3 +1

Assuming we are at s13 and we want to update Q(s13, down).
Q13 is (left=0.3, right=0.1, down=0.4, up=0.1).
Q23 is (left=0.3, right=-0.4, down=0.7, up=0.3).

▶ According to SARSA, we take (s, a, r, s′, a′) according to
policy π. So a′ ∼ π(s), which we assume uses ϵ-greedy.

▶ a′ is not necessarily argmaxa′Q(s23, a
′), which is going down.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen37 / 42

SARSA vs Q-Learning

Let’s assume the Q function is:
1 2 3 4

1 Q13

2 X Q23 -1

3 +1

Assuming we are at s13 and we want to update Q(s13, down).
Q13 is (left=0.3, right=0.1, down=0.4, up=0.1).
Q23 is (left=0.3, right=-0.4, down=0.7, up=0.3).

▶ Let’s assume that a′ happens to sample ‘right’.

▶ We update using SARSA rule:
Q(s13, down) = Q(s13, down) + α(r + γQ(s′, a′)−Q(s, a)).

▶ We update using SARSA rule:
Q(s13, down) = 0.4+0.4 ∗ (−0.04+0.9 ∗−0.4− 0.4) = 0.265

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen38 / 42

SARSA vs Q-Learning

Let’s assume the Q function is:
1 2 3 4

1 Q13

2 X Q23 -1

3 +1

Assuming we are at s13 and we want to update Q(s13, down).
Q13 is (left=0.3, right=0.1, down=0.4, up=0.1).
Q23 is (left=0.3, right=-0.4, down=0.7, up=0.3).

▶ Now Q13 is (left=0.3, right=0.3, down=0.26, up=0.1).

▶ The best move becomes ‘Moving Left’.

▶ We can see that ‘SARSA’ is pretty conservative.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen39 / 42

SARSA vs Q-Learning

Let’s assume the Q function is:
1 2 3 4

1 Q13

2 X Q23 -1

3 +1

Assuming we are at s13 and we want to update Q(s13, down).
Q13 is (left=0.3, right=0.1, down=0.4, up=0.1).
Q23 is (left=0.3, right=-0.4, down=0.7, up=0.3).

▶ According to Q-Learning, we take (s, a, r, s′) according to
policy π.

▶ a′ is forced to argmaxa′Q(s23, a
′), which is going down.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen40 / 42

SARSA vs Q-Learning

Let’s assume the Q function is:
1 2 3 4

1 Q13

2 X Q23 -1

3 +1

Assuming we are at s13 and we want to update Q(s13, down).
Q13 is (left=0.3, right=0.1, down=0.4, up=0.1).
Q23 is (left=0.3, right=-0.4, down=0.7, up=0.3).

▶ We update using SARSA rule: Q(s13, down) =
Q(s13, down) + α(r + γmaxa′Q(s′, a′)−Q(s, a)).

▶ We update using SARSA rule:
Q(s13, down) = 0.4 + 0.4 ∗ (−0.04 + 0.9 ∗ 0.7− 0.4) = 0.476

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen41 / 42

SARSA vs Q-Learning

Let’s assume the Q function is:
1 2 3 4

1 Q13

2 X Q23 -1

3 +1

Assuming we are at s13 and we want to update Q(s13, down).
Q13 is (left=0.3, right=0.1, down=0.4, up=0.1).
Q23 is (left=0.3, right=-0.4, down=0.7, up=0.3).

▶ Now Q13 is (left=0.3, right=0.1, down=0.476, up=0.1).

▶ The best move of ‘Moving Down’ is enhanced.

▶ We can see that ‘Q-Learning’ is pretty aggressive.

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen42 / 42

	Learning Goals
	Introduction to Reinforcement Learning
	Passive Adaptive Dynamic Programming
	Active Adaptive Dynamic Programming
	Temporal Difference Error
	Q-Learning
	SARSA

