
Value Iteration & Policy Iteration

Yuntian Deng

Lecture 14

Readings: RN 17.2. PM 9.5.2, 9.5.3.
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Learning Goals

▶ Trace the execution of and implement the value iteration
algorithm for solving a Markov Decision Process.

▶ Trace the execution of and implement the policy iteration
algorithm for solving a Markov Decision Process.
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Value Functions

▶ V π(s): Value of being in state s following a policy π

▶ V ∗(s): Value of being in state s following optimal policy π∗

▶ Qπ(s, a): Value of taking action a while in state s and then
follow π

▶ Q∗(s, a): Value of taking action a while in state s and then
follow π∗

▶ π(a|s): the policy function, converting state into a
distribution over actions
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Expected Return

Remember that the agent’s goal is to find a sequence of actions
that will maximize the long-term return. We have defined the
long-term return in a discounted format:

Gt = Rt+1 + γRt+2 + γ2Rt+2 + γT−1RT

= Rt+1 + γGt+1

A value function estimates how good it is for the agent to be in a
given state (or how good it is to perform a given action in a given
state) in terms of return G.

CS 486/686: Intro to AI Lecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen 6 / 33



The V-function

More formally, the V-function also referred to as the state-value
function, or simply V, measures the goodness of each state.

V π(s) = Eπ[Gt|st = s] = Eπ[

T∑
j=0

γjRt+j+1|s = st] (1)

It describes the expected value of the total return G, at time step t
starting from the state s at time t and then following policy π. We
use expectation E in this definition because the Environment
transition function might act in a stochastic way.
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The Q-function

It defines the value of taking action a in state s under a policy π,
denoted by Q, as the expected Return G starting from s, taking
the action a, and thereafter following policy π.

A policy can be written as π(a|s), where
∑

a π(a|s) = 1.

Qπ(s, a) = Eπ[Gt|st = s, at = a] (2)

= Eπ[
T∑

j=0

γjRt+j+1|st = s, at = a] (3)

In this equation again it is used expectation E because the
Environment transition function might act in a stochastic way.
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Relation between Q/V function

We can assert the state-value function is equivalent to the sum of
action-value functions of all outgoing actions a, multiplied by the
policy probability of selecting each action:

V π(s) =
∑
a

π(a|s)Qπ(s, a) (4)

Qπ(s, a) = r(s) + γ
∑
s′

P (s′|s, a)V π(s′) (5)
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Graph Relation between Q/V function

V π(s)

∑
π(a|s)Q(s, a)

Q(s, a1) Q(s, a2) Q(s, a3)

R(s)+
∑

p(s′|s, a)V (s′)

V (s′1) V (s′2)
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Solving for V ∗(s)

V and Q are defined recursively in terms of each other.

V ∗(s) =max
a

Q∗(s, a) (6)

Q∗(s, a) =R(s) + γ
∑
s′

P (s′|s, a)V ∗(s′). (7)

Combining equations 6 and 7, we get the Bellman equations:

V ∗(s) =R(s) + γmax
a

∑
s′

P (s′|s, a)V ∗(s′). (8)

V ∗(s) are the unique solutions to the Bellman equations.
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Write down V ∗(s11)

Recall the grid environment from Lecture 13.

Write down the Bellman equation for V ∗(s11).

1 2 3 4

1 −0.04 −0.04 −0.04 −0.04
2 −0.04 X −0.04 -1

3 −0.04 −0.04 −0.04 +1

→

V ∗(s11) = −0.04 + γmax[0.8V ∗(s12) + 0.1V ∗(s21) + 0.1V ∗(s11),

0.9V ∗(s11) + 0.1V ∗(s12),

0.9V ∗(s11) + 0.1V ∗(s21),

0.8V ∗(s21) + 0.1V ∗(s12) + 0.1V ∗(s11)].
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Q: Solve the Bellman equations efficiently

Q #1: Can we solve the system of Bellman equations in
polynomial time?

(A) Yes

(B) No

(C) I don’t know

The Bellman equation for V ∗(s11):

V ∗(s11) = −0.04 + γmax[0.8V ∗(s12) + 0.1V ∗(s21) + 0.1V ∗(s11),

0.9V ∗(s11) + 0.1V ∗(s12),

0.9V ∗(s11) + 0.1V ∗(s21),

0.8V ∗(s21) + 0.1V ∗(s12) + 0.1V ∗(s11)].

→ Correct answer is (B) No. The system of Bellman equations is
nonlinear because of “max”. There is no general technique to solve
a nonlinear system of equations efficiently.
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Value Iteration

The Bellman equations:

V ∗(s) =R(s) + γmax
a

∑
s′

P (s′|s, a)V ∗(s′).

Let Vi(s) be the values for the ith iteration.

1. Start with arbitrary initial values for V0(s).

2. At the ith iteration, compute Vi+1(s) as follows.

Vi+1(s)← R(s) + γmax
a

∑
s′

P (s′|s, a)Vi(s
′)

3. Terminate when max
s
|Vi(s)− Vi+1(s)| is small enough.

If we apply the Bellman update infinitely often, the Vi’s are
guaranteed to converge to the optimal values.
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Apply Value Iteration

Let’s apply the value iteration algorithm.

Assume that

▶ the discount factor γ = 1.

▶ R(s) = −0.04,∀s ̸= s24, s ̸= s34.

Start with V0(s) = 0,∀s ̸= s24, s ̸= s34.

Note: for terminal states sT ∈ {s24, s34}, V (sT ) = R(sT ).
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Q: Calculating V1(s23)

#2: What is V1(s23)?

Vi+1(s)← R(s) + γmax
a

∑
s′

P (s′|s, a)Vi(s
′)

(A) (−∞, 0) (B) [0, 0.25) (C) [0.25, 0.5)
(D) [0.5, 0.75) (E) [0.75, 1]

V0(s):

1 2 3 4

1 0 0 0 0

2 0 X 0 -1

3 0 0 0 +1

→ Correct answer is (A). V1(s23) = −0.04.
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Q: Calculating V1(s33)

#3: What is V1(s33)?

Vi+1(s)← R(s) + γmax
a

∑
s′

P (s′|s, a)Vi(s
′)

(A) 0.26 (B) 0.36 (C) 0.46
(D) 0.56 (E) 0.76

V0(s):

1 2 3 4

1 0 0 0 0

2 0 X 0 -1

3 0 0 0 +1

→ Correct answer is (E). V1(s33) = 0.76.
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The Values of V1(s)

V0(s):

1 2 3 4

1 0 0 0 0

2 0 X 0 -1

3 0 0 0 +1

V1(s):

1 2 3 4

1 −0.04 −0.04 −0.04 −0.04
2 −0.04 X −0.04 -1

3 −0.04 −0.04 0.76 +1

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen20 / 33



Q: Calculating V2(s33)

Q #4: What is V2(s33)?

Vi+1(s)← R(s) + γmax
a

∑
s′

P (s′|s, a)Vi(s
′)

Here is V1(s):

1 2 3 4

1 −0.04 −0.04 −0.04 −0.04
2 −0.04 X −0.04 -1

3 −0.04 −0.04 0.76 +1

(A) 0.822

(B) 0.832

(C) 0.842

(D) 0.852

(E) 0.862

→ Correct answer is (B).
V2(s33) = 0.832.
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Q: Calculating V2(s23)

Q #5: What is V2(s23)?

Vi+1(s)← R(s) + γmax
a

∑
s′

P (s′|s, a)Vi(s
′)

Here is V1(s):

1 2 3 4

1 −0.04 −0.04 −0.04 −0.04
2 −0.04 X −0.04 -1

3 −0.04 −0.04 0.76 +1

(A) 0.464

(B) 0.466

(C) 0.468

(D) 0.470

(E) 0.472

→ Correct answer is (A).
V2(s23) = 0.464.
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Q: Calculating V2(s32)

Q #6: What is V2(s32)?

Vi+1(s)← R(s) + γmax
a

∑
s′

P (s′|s, a)Vi(s
′)

Here is V1(s):

1 2 3 4

1 −0.04 −0.04 −0.04 −0.04
2 −0.04 X −0.04 -1

3 −0.04 −0.04 0.76 +1

(A) 0.16

(B) 0.36

(C) 0.56

(D) 0.76

(E) 0.96

→ Correct answer is (C).
V2(s32) = 0.56.
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The Values of V2(s)

V1(s):

1 2 3 4

1 −0.04 −0.04 −0.04 −0.04
2 −0.04 X −0.04 -1

3 −0.04 −0.04 0.76 +1

V2(s):

1 2 3 4

1 −0.08 −0.08 −0.08 −0.08
2 −0.08 X 0.464 -1

3 −0.08 0.56 0.832 +1
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Observations from Value Iteration

Each state accumulates negative rewards
until the algorithm finds a path to the +1 goal state.

How should we update V ∗(s) for all states s?

▶ synchronously: store and use Vi(s) to calculate Vi+1(s).

▶ asynchronously: stores Vi(s) and update the values one at a
time, in any order.
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Policy Iteration

▶ Deriving the optimal policy does not require accurate
estimates of the utility function (V ∗(s)).

→ If one action is clearly better than all others, then the
exact magnitude of the utilities on the states involved need
not be precise.

▶ Policy iteration alternates between two steps.

1. Policy evaluation: Given a policy πi, calculate V πi(s), which
is the utility of each state if πi were to be executed.

2. Policy improvement: Calculate a new policy πi+1 using V πi .

Terminates when there is no change in the policy.

→ Must terminate because there are finitely many policies for
a finite state space and each iteration yields a better policy.
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Policy Iteration

▶ Policy evaluation:

V πi(s) =R(s) + γ
∑
s′

P (s′|s, πi(s))V πi(s′).

▶ Policy improvement:

πi+1(s) = argmax
a

∑
s′

P (s′|s, a)V πi(s′).
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Policy Evaluation v.s. Bellman Equations

Policy evaluation:

V (s) =R(s) + γ
∑
s′

P (s′|s, π(s))V (s′).

Bellman equations:

V (s) =R(s) + γmax
a

∑
s′

P (s′|s, a)V (s′).

Write down both equations for V (s11).
Assume that π(s11) = down.
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Performing Policy Evaluation Exactly

Policy evaluation:

V (s) =R(s) + γ
∑
s′

P (s′|s, π(s))V (s′).

We could solve the system of linear equations exactly using
standard linear algebra techniques.

For n states, this will take O(n3) time...
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Performing Policy Evaluation Iteratively

Policy evaluation:

V (s) =R(s) + γ
∑
s′

P (s′|s, π(s))V (s′).

Solve the system of linear equations approximately
by performing a number of simplified value iteration steps:

Repeat for j ∈ {1, 2, . . . ,m}:

Vj+1(s)← R(s) + γ
∑
s′

P (s′|s, π(s))Vj(s
′).
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Policy Iteration: An Example

Apply policy iteration for the simple grid environment below. Use
iteration for policy evaluation with m = 1. s12 and s22 are
terminal states.

-0.04 +1

-0.04 -1

A = {up, right, down, left}.

The initial policy is π1(s) = right, ∀s ∈ S.

The agent moves towards, to the right of, or to the left of the
intended direction with probabilities 0.8, 0.1, and 0.1 respectively.

Let γ = 1.
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Revisiting Learning Goals

▶ Trace the execution of and implement the value iteration
algorithm for solving a Markov Decision Process.

▶ Trace the execution of and implement the policy iteration
algorithm for solving a Markov Decision Process.
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