
Inference in Hidden Markov Models
Part 2

Yuntian Deng

Lecture 11

Readings: RN 14.2.2.
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Learning Goals

▶ Calculate the smoothing probability for a time step in a
hidden Markov model.

▶ Describe the justification for a step in the derivation of the
smoothing formulas.

▶ Describe the forward-backward algorithm.

▶ Describe the Viterbi algorithm.
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The Umbrella Model

Let St be true if it rains on day t and false otherwise.

Let Ot be true if the director carries an umbrella on day t and false otherwise.

P (s0) = 0.5

P (st|st−1) = 0.7
P (st|¬st−1) = 0.3

P (ot|st) = 0.9
P (ot|¬st) = 0.2

St−2 St−1 St St+1

Ot−2 Ot−1 Ot Ot+1
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Smoothing

Given the observations from day 0 to day t− 1, what is the
probability that I am in a particular state on day k?

P (Sk|o0:(t−1)), where 0 ≤ k ≤ t− 1
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Smoothing through Backward Recursion
Calculating the smoothed probability P (Sk|o0:(t−1)):

P (Sk|o0:(t−1))

= αP (Sk|o0:k)P (o(k+1):(t−1)|Sk)

= α f0:k b(k+1):(t−1)

Calculate f0:k using forward recursion.
Calculate b(k+1):(t−1) using backward recursion.

Backward Recursion:

Base case:
bt:(t−1) = 1⃗.

Recursive case:

b(k+1):(t−1) =
∑
sk+1

P (ok+1|sk+1)b(k+2):(t−1)P (sk+1|Sk).
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A Smoothing Example

Consider the umbrella story.

Assume that O0 = true, O1 = true, and O2 = true.

What is the probability that it rained on day 0 (P (S0|o0 ∧ o1 ∧ o2))
and the probability it rained on day 1 (P (S1|o0 ∧ o1 ∧ o2))?

Here are the useful quantities from the umbrella story:

P (s0) = 0.5

P (ot|st) = 0.9, P (ot|¬st) = 0.2

P (st|s(t−1)) = 0.7, P (st|¬s(t−1)) = 0.3
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A Smoothing Example

Calculate P (S1|o0:2).

(1) What are the values of k and t?

P (S1|o0:2) = P (Sk|o0:(t−1)) ⇒ k = 1, t = 3

(2) Write the probability as a product of forward and backward
messages.

P (S1|o0:2)
= αP (S1|o0:1) ∗ P (o2:2|S1)

= α f0:1 ∗ b2:2

(3) We already calculated f0:1 = ⟨0.883, 0.117⟩ in the last lecture.
Next, we will calculate b2:2 using backward recursion.
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A Backward Recursion Example - Recursive Case

Calculate b2:2 = P (o2:2|S1) where k = 1, t = 3.

b2:2 = P (o2:2|S1)

=
∑
s2

P (o2|s2) ∗ b3:2 ∗ P (s2|S1)

=
∑
s2

P (o2|s2) ∗ P (o3:2|s2) ∗ P (s2|S1)

=
∑
s2

P (o2|s2) ∗ P (o3:2|s2) ∗ ⟨P (s2|s1), P (s2|¬s1)⟩

=

(
P (o2|s2) ∗ P (o3:2|s2) ∗ ⟨P (s2|s1), P (s2|¬s1)⟩

+ P (o2|¬s2) ∗ P (o3:2|¬s2) ∗ ⟨P (¬s2|s1), P (¬s2|¬s1)⟩
)
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A Backward Recursion Example - Recursive Case
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A Backward Recursion Example - Recursive Case

Calculate b2:2 = P (o2:2|S1) where k = 1, t = 3.

b2:2 = P (o2:2|S1)

=

(
P (o2|s2) ∗ P (o3:2|s2) ∗ ⟨P (s2|s1), P (s2|¬s1)⟩

+ P (o2|¬s2) ∗ P (o3:2|¬s2) ∗ ⟨P (¬s2|s1), P (¬s2|¬s1)⟩
)

=

(
0.9 ∗ 1 ∗ ⟨0.7, 0.3⟩+ 0.2 ∗ 1 ∗ ⟨0.3, 0.7⟩

)
= (0.9 ∗ ⟨0.7, 0.3⟩+ 0.2 ∗ ⟨0.3, 0.7⟩)
= (⟨0.63, 0.27⟩+ ⟨0.06, 0.14⟩)
= ⟨0.69, 0.41⟩
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A Smoothing Example

Calculate P (S1|o0:2).
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A Smoothing Example

Calculate P (S1|o0:2).

P (S1|o0:2)
= αP (S1|o0:1) ∗ P (o2:2|S1)

= α f0:1 ∗ b2:2
= α⟨0.883, 0.117⟩ ∗ ⟨0.69, 0.41⟩
= α⟨0.6093, 0.0480⟩
= ⟨0.927, 0.073⟩
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A Smoothing Example

Calculate P (S0|o0:2).

k = 0, t = 3

b1:2 = P (o1:2|S0)

= (P (o1|s1) ∗ P (o2:2|s1) ∗ ⟨P (s1|s0), P (s1|¬s0)⟩
+ P (o1|¬s1) ∗ P (o2:2|¬s1) ∗ ⟨P (¬s1|s0), P (¬s1|¬s0)⟩)

= (0.9 ∗ 0.69 ∗ ⟨0.7, 0.3⟩+ 0.2 ∗ 0.41 ∗ ⟨0.3, 0.7⟩)
= ⟨0.4593, 0.2437⟩

P (S0|o0:2) = α f0:0 ∗ b1:2
= α⟨0.818, 0.182⟩ ∗ ⟨0.4593, 0.2437⟩
= ⟨0.894, 0.106⟩
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Smoothing: Example 2

Consider a hidden Markov model with 4 time steps.

P (s0) = 0.4

P (st|st−1) = 0.7
P (st|¬st−1) = 0.2

P (ot|st) = 0.9
P (ot|¬st) = 0.2

S0 S1 S2 S3

O0 O1 O2 O3

Calculate P (S2|o0 ∧ o1 ∧ o2 ∧ ¬o3).
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Smoothing (time k)

How can we derive the formula for P (Sk|o0:(t−1)), 0 ≤ k ≤ t− 1?

P (Sk|o0:(t−1))

= P (Sk|o(k+1):(t−1) ∧ o0:k)

= αP (Sk|o0:k)P (o(k+1):(t−1)|Sk ∧ o0:k)

= αP (Sk|o0:k)P (o(k+1):(t−1)|Sk)

= αf0:kb(k+1):(t−1)

Calculate f0:k through forward recursion.

Calculate b(k+1):(t−1) through backward recursion.
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Q: Smoothing Derivation

Q #1: What is the justification for the step below?

P (Sk|o0:(t−1))

= P (Sk|o(k+1):(t−1) ∧ o0:k)

(A) Bayes’ rule

(B) Re-writing the expression

(C) The chain/product rule

(D) The Markov assumption

(E) The sum rule

→ Correct answer is (B) Re-writing the expression.
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Q: Smoothing Derivation

Q #2: What is the justification for the step below?

= P (Sk|o(k+1):(t−1) ∧ o0:k)

= αP (Sk|o0:k)P (o(k+1):(t−1)|Sk ∧ o0:k)

(A) Bayes’ rule

(B) Re-writing the expression

(C) The chain/product rule

(D) The Markov assumption

(E) The sum rule

→ Correct answer is (A) Bayes’ rule.
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Q: Smoothing Derivation

Q #3: What is the justification for the step below?

= αP (Sk|o0:k)P (o(k+1):(t−1)|Sk ∧ o0:k)

= αP (Sk|o0:k)P (o(k+1):(t−1)|Sk)

(A) Bayes’ rule

(B) Re-writing the expression

(C) The chain/product rule

(D) The Markov assumption

(E) The sum rule

Sk−1 Sk Sk+1 Sk+2

Ok−1 Ok Ok+1 Ok+2

→ Correct answer is (D) The Markov assumption.
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Backward Recursion Formula Derivations

How did we derive the formula for backward recursion?

P (o(k+1):(t−1)|Sk)

=
∑

s(k+1)

P (o(k+1):(t−1) ∧ s(k+1)|Sk) (1)

=
∑

s(k+1)

P (o(k+1):(t−1)|s(k+1) ∧ Sk) ∗ P (s(k+1)|Sk) (2)

=
∑

s(k+1)

P (o(k+1):(t−1)|s(k+1)) ∗ P (s(k+1)|Sk) (3)

=
∑

s(k+1)

P (o(k+1) ∧ o(k+2):(t−1)|s(k+1)) ∗ P (s(k+1)|Sk) (4)

=
∑

s(k+1)

P (o(k+1)|s(k+1)) ∗ P (o(k+2):(t−1)|s(k+1)) ∗ P (s(k+1)|Sk) (5)
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Q: Backward Recursion Derivation

Q #4: What is the justification for the step below?

P (o(k+1):(t−1)|Sk)

=
∑
s(k+1)

P (o(k+1):(t−1) ∧ s(k+1)|Sk)

(A) Bayes’ rule

(B) Re-writing the expression

(C) The chain/product rule

(D) The Markov assumption

(E) The sum rule

→ Correct answer is (E) The sum rule.
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Q: Backward Recursion Derivation

Q #5: What is the justification for the step below?

=
∑
s(k+1)
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=
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(A) Bayes’ rule

(B) Re-writing the expression

(C) The chain/product rule

(D) The Markov assumption

(E) The sum rule
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Q: Backward Recursion Derivation

Q #6: What is the justification for the step below?

=
∑
s(k+1)

P (o(k+1):(t−1)|s(k+1) ∧ Sk)P (s(k+1)|Sk)
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∑
s(k+1)

P (o(k+1):(t−1)|s(k+1))P (s(k+1)|Sk)
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(C) The chain/product rule

(D) The Markov assumption

(E) The sum rule
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Q: Backward Recursion Derivation

Q #7: What is the justification for the step below?

=
∑
s(k+1)

P (o(k+1):(t−1)|s(k+1)) ∗ P (s(k+1)|Sk)

=
∑
s(k+1)

P (o(k+1) ∧ o(k+2):(t−1)|s(k+1)) ∗ P (s(k+1)|Sk)

(A) Bayes’ rule

(B) Re-writing the expression

(C) The chain/product rule

(D) The Markov assumption

(E) The sum rule

→ Correct answer is (B) Re-writing the expression.
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Q: Backward Recursion Derivation
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Q: Backward Recursion Derivation

Q #8: What is the justification for the step below?

=
∑
s(k+1)

P (o(k+1) ∧ o(k+2):(t−1)|s(k+1)) ∗ P (s(k+1)|Sk)

=
∑
s(k+1)

P (o(k+1)|s(k+1)) ∗ P (o(k+2):(t−1)|s(k+1)) ∗ P (s(k+1)|Sk)

(A) Bayes’ rule

(B) Re-writing the expression

(C) The chain/product rule

(D) The Markov assumption

(E) The sum rule

Sk−1 Sk Sk+1 Sk+2

Ok−1 Ok Ok+1 Ok+2

→ Correct answer is (D) The Markov assumption.
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The Forward-Backward Algorithm

For a hidden Markov model with any number of time steps,
we can calculate the smoothed probabilities using
one forward pass and one backward pass through the network.

S0 S1 S2 S3

O0 O1 O2 O3

P (Sk|o0:(t−1))

= αP (Sk|o0:k)P (o(k+1):(t−1)|Sk)

= α f0:k b(k+1):(t−1)
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Finding most likely explanation

We have observed all the states o0:t−1 and want to decode all the
hidden states s0:t−1. Here we make a more general assumption:

▶ St is not boolean variable, St ∈ {0, 1, 2, · · · , n− 1}.

▶ The time spans from 0 to t− 1.

▶ The transition matrix A ∈ Rn×n and emission matrix On×o

are already given, where o is the possible observations.

ŝ0, · · · , ŝt−1 = argmax
S0:St−1

p(S0, · · · , St−1|o0:t−1)
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Brutal-Force Decoding

Loop through all the possible S0:t−1, and then compute their
likelihood p(S0:t−1|o0:t−1) to find the maximum.

▶ S0 = T, S1 = T, S2 = T, · · · , St−1 = T

▶ S0 = T, S1 = T, S2 = T, · · · , St−1 = F

▶ · · ·

▶ S0 = F, S1 = F, S2 = F, · · · , St−1 = F

The complexity is O(nt), which is extremely expensive.
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Dynamic Programming

Assuming we have a sequence S0:k ending at Sk = j, we can
define a function r(Sk = j, S0:k−1) as:

r(Sk = j, S0:k−1) = P (S0:k−1, Sk = j|o0:k)

Define an auxiliary function πk(j) as:

πk(j) = max
S0:k−1

r(Sk = j, S0:k−1)

= max
S0:k;s.t.Sk=j

P (S0:k−1, Sk = j|o0:k)

By definition, we have:
πk(j) denotes the maximum probability of any sequence S0:k

ending with Sk = j under the current observations.
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Dynamic Programming

π(Sk−1 = j)

Sk−1 = 0

Sk−1 = 1

Sk−1 = 2

Sk−1 = 3

π(Sk = j)

Sk = 0

Sk = 1

Sk = 2

Sk = 3

P (Sk|Sk−1)
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Dynamic Programming

Base case:
For 0-th step, we have:

π0(j) = αP (S0 = j)P (o0|S0 = j)

Recursive definition:
For any k ∈ {1, · · · , t− 1}, for any j, we have:

πk(j) = P (ok|Sk = j)max
z

[πk−1(z)P (Sk = j|Sk−1 = z)]

ϕk(j) = argmax
z

[πk−1(z)P (Sk = j|Sk−1 = z)]
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Viterbi Algorithm

Given: π0 and probabilities P . Return ŝ as the output.

▶ For k = 1, · · · , t− 1

▶ For j = 0, · · ·n− 1

πk(j) = P (ok|Sk = j)max
z

[πk−1(z)P (Sk = j|Sk−1 = z)]

ϕk(j) = argmax
z

[πk−1(z)P (Sk = j|Sk−1 = z)]

Find last state ŝt−1 = argmaxj πt−1(j).

▶ For k = t− 1, · · · , 1

ŝk−1 = ϕk(ŝk)

▶ Return ŝ = ŝ0, · · · , ŝt−1.
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Viterbi Algorithm

Figure: viterbi algorithm visualization.

Given the length of the sequence as t, and the number of states as
n, the time complexity is O(t× n2)
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Revisiting Learning Goals

▶ Calculate the smoothing probability for a time step in a
hidden Markov model.

▶ Describe the justification for a step in the derivation of the
smoothing formulas.

▶ Describe the forward-backward algorithm.

▶ Describe the Viterbi algorithm.
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