
Inference in Hidden Markov Models
Part 1

Yuntian Deng

Lecture 10

Readings: RN 14.1 & 14.2.1, PM 8.5.1 - 8.5.3.
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Learning Goals

▶ Construct a hidden Markov model given a real-world scenario.

▶ Explain the independence assumptions in a hidden Markov
model.

▶ Calculating the filtering probability for a time step in a hidden
Markov model.

▶ Describe the justification for a step in the derivation of the
filtering formulas.
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Inference in a Changing World

So far, we can reason probabilistically in a static world.
However, the world evolves over time.

In an evolving world, we have to reason about a sequence of events.

Applications of sequential belief networks:

▶ weather predictions

▶ stock market predictions

▶ patient monitoring

▶ robot localization

→ A robot is trying to figure out where it is.

▶ speech and handwriting recognition
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Speech Recognition

Figure: Speech Recognition
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Running Example: the Umbrella Story

You are a security guard stationed at a secret underground facility.

You want to know whether it’s raining today.

Unfortunately, your only access to the outside world occurs each
morning when you see the director coming in with, or without, an
umbrella.
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States and Observations

▶ The world contains a series of time slices.

▶ Each time slice contains a set of random variables,
Let St denote the unobservable state at time t.

Let Ot denote the signal/observation at time t.

What are the random variables in the umbrella world?

→ St denotes whether it rains at time t.

Ot denotes whether the director carries an umbrella at time t.
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Transition Model

How does the current state depend on the previous states?

In general, every state may depend on all the previous states.

P (St|St−1 ∧ St−2 ∧ St−3 ∧ · · · ∧ S0)

Problem: As t increases, the conditional probability distribution
can be unboundedly large.

Solution: Let the current state depend on a fixed number of
previous states.
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K-order Markov Chain
First-order Markov process:

St−2 St−1 St St+1

The transition model:

P (St|St−1 ∧ St−2 ∧ St−3 ∧ · · · ∧ S0) = P (St|St−1)

Second-order Markov process:

St−2 St−1 St St+1

The transition model:

P (St|St−1 ∧ St−2 ∧ St−3 ∧ · · · ∧ S0) = P (St|St−1 ∧ St−2)
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The Markov Assumption

The Markov assumption:
The future is independent of the past given the present.

Every day, our slate is wiped clean. We can start fresh. Every day
is a new beginning.

St−2 St−1 St St+1

The transition model:

P (St|St−1 ∧ St−2 ∧ St−3 ∧ · · · ∧ S0) = P (St|St−1)
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Stationary Process

Is there a different conditional probability distribution
for each time step?

Stationary process:

▶ The dynamics does not change over time.

▶ The conditional probability distribution for each time step
remains the same.

What are the advantages of using a stationary model?

→ Simple to specify.

Natural: the dynamics typically does not change.
If it changes, it’s due to another feature that we can model.

A finite number of parameters gives an infinite network.
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Transition model for the umbrella story

Let St be true if it is raining on day t and false otherwise.

P (s0) = 0.5

P (st|st−1) = 0.7
P (st|¬st−1) = 0.3

St−2 St−1 St St+1
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Warm-up Example

What’s the chance of raining in day 1?

p(s1 = T ) = 0.5 ∗ 0.7 + 0.5 ∗ 0.3 = 0.5

p(s1 = F ) = 0.5 ∗ 0.3 + 0.5 ∗ 0.7 = 0.5

What’s the chance of raining in day 2?

p(s2 = T ) = 0.5 ∗ 0.7 + 0.5 ∗ 0.3 = 0.5

p(s2 = F ) = 0.5 ∗ 0.3 + 0.5 ∗ 0.7 = 0.5

On day K?
p(sK = T ) = p(sK = F ) = 0.5

CS 486/686: Intro to AILecturer: Yuntian Deng Slides: Alice Gao / Blake Vanberlo / Wenhu Chen14 / 45



Sensor model

How does the evidence variable Ot at time t depend on
the previous and current states S0, S1, . . . , St?

(Sensor) Markov assumption:

Each state is sufficient to generate its observation.

P (Ot|St ∧ St−1 ∧ · · · ∧ S0 ∧Ot−1 ∧Ot−2 ∧ · · · ∧O0) = P (Ot|St)
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Complete model for the umbrella story

Let St be true if it rains on day t and false otherwise.

Let Ot be true if the director carries an umbrella on day t and false otherwise.

P (s0) = 0.5

P (st|st−1) = 0.7
P (st|¬st−1) = 0.3

P (ot|st) = 0.9
P (ot|¬st) = 0.2

St−2 St−1 St St+1

Ot−2 Ot−1 Ot Ot+1
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Warm-up Example

What’s the chance of the director carrying an umbrella on day 1?

p(O1 = T ) = 0.5 ∗ 0.9 + 0.5 ∗ 0.2 = 0.55

p(O1 = F ) = 0.5 ∗ 0.1 + 0.5 ∗ 0.8 = 0.45

What’s the chance of the director carrying an umbrella on day 2?

p(O2 = T ) = 0.5 ∗ 0.9 + 0.5 ∗ 0.2 = 0.55

p(O2 = F ) = 0.5 ∗ 0.1 + 0.5 ∗ 0.8 = 0.45

On day K?

p(OK = T ) = 0.55, p(OK = F ) = 0.45
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Hidden Markov Model

Hidden Markov Model:

▶ A Markov process

▶ The state variables are unobservable

▶ The evidence variables, which depend on the states,
are observable
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Common Inference Tasks

▶ Filtering: Which state am I in right now?

→ The posterior distribution over the most recent state given
all evidence to date.

▶ Prediction: Which state will I be in tomorrow?

→ The posterior distribution over the future state given all
evidence to date.

▶ Smoothing: Which state was I in yesterday?

→ The posterior distribution over a past state, given all
evidence to date.

▶ Most likely explanation: Which sequence of states is most
likely to have generated the observations? → Find the
sequence of states that is most likely to have generated all the
evidence to date.
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Algorithms for the inference tasks

A HMM is a Bayesian network.
We can perform inference using the variable elimination algorithm!

More specialized algorithms:

▶ The forward-backward algorithm: filtering and smoothing

▶ The Viterbi algorithm: most likely explanation
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Filtering

Given the observations from time 0 to time k, what is the
probability that I am in a particular state at time k?

P (Sk|o0:k)
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Warm-up Question

I already know that the manager brought umbrella yesterday, but
he did not bring umbrella today. What’s the chance of raining for
today, e.g. p(S1|o0,¬o1)?

p(s0) = 0.5

P (st|st−1) = 0.7

P (st|¬st−1) = 0.3

P (ot|st) = 0.9

P (ot|¬st) = 0.2

Is s1 independent of o0 given o1?
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Warm-up Question

I already know that the manager brought umbrella yesterday, but
he did not bring umbrella today. What’s the chance of raining for
today, e.g. p(S1|o0,¬o1)?

p(s0) = 0.5

P (st|st−1) = 0.7

P (st|¬st−1) = 0.3

P (ot|st) = 0.9

P (ot|¬st) = 0.2

p(S1|o0,¬o1) ∝ p(S1, o0,¬o1)

=
∑
S0

p(S0)p(o0|S0)p(S1|S0)p(¬o1|S1)

Operations: (3 mult * 2 + 1 add) * 2 = 14 ops
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Filtering through Enumeration

I already know that the manager’s behavior in these past K days,
what’s the chance of raining for today, e.g. p(Sk|o0, · · · , ok)?

p(s0) = 0.5

P (st|st−1) = 0.7

P (st|¬st−1) = 0.3

P (ot|st) = 0.9

P (ot|¬st) = 0.2

p(Sk|o0, · · · , ok) ∝ p(Sk, o0, · · · , ok)

=
∑
Sk

· · ·
∑
S0

p(S0)p(o0|S0) · · · p(ok|SK)

Operations: O(K × 2K) ops
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Filtering through Forward Recursion

Let f0:k = P (Sk|o0:k).

Base case:
f0:0 = αP (o0|S0)P (S0)

Recursive case:

f0:k = αP (ok|Sk)
∑
sk−1

P (Sk|sk−1)f0:(k−1)

S0 S1 S2 S3

O0 O1 O2 O3
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Filtering through Forward Recursion

f0:k = αP (ok|Sk)
∑
sk−1

P (Sk|sk−1)f0:(k−1)

S0 S1 S2 S3

O0 O1 O2 O3

Operations:
f0:0 has 2 mult ops,
f0:1 has (2 mult + 1 add + 1 mult) * 2 ops
f0:2 has (2 mult + 1 add + 1 mult) * 2 ops

Total Operation: O(k) ops
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The Umbrella Story

P (s0) = 0.5

P (st|st−1) = 0.7
P (st|¬st−1) = 0.3

P (ot|st) = 0.9
P (ot|¬st) = 0.2

St−2 St−1 St St+1

Ot−2 Ot−1 Ot Ot+1
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A Filtering Example

Consider the umbrella story.

Assume that O0 = t and O1 = t.

Let’s calculate f0:0 and f0:1 using forward recursion.

Here are the useful quantities from the umbrella story.

P (s0) = 0.5

P (ot|st) = 0.9, P (ot|¬st) = 0.2

P (st|s(t−1)) = 0.7, P (st|¬s(t−1)) = 0.3
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A Filtering Example - Base Case of Forward Recursion

Calculate f0:0 = P (S0|o0).
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A Filtering Example - Base Case of Forward Recursion

Calculate f0:0 = P (S0|o0).

α = 1/p(o0), constant

P (s0|o0) = αP (o0|s0)P (s0) = α 0.9 ∗ 0.5 = α 0.45

P (¬s0|o0) = αP (o0|¬s0)P (¬s0) = α 0.2 ∗ 0.5 = α 0.1

P (s0|o0) = 0.45/(0.45 + 0.1) = 0.818

P (¬s0|o0) = 1− 0.818 = 0.182

A more compact approach:

P (S0|o0) = αP (o0|S0)P (S0)

= α ⟨0.9, 0.2⟩ ∗ ⟨0.5, 0.5⟩
= α ⟨0.45, 0.1⟩
= ⟨0.818, 0.182⟩
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A Filtering Example - Recursive Case of Forward Recursion

Calculate f0:1 = αP (o1|S1)
∑
s0

P (S1|s0)f0:0

where f0:0 = ⟨0.818, 0.182⟩.
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A Filtering Example - Recursive Case of Forward Recursion

Calculate f0:1 = αP (o1|S1)
∑
s0

P (S1|s0)f0:0

where f0:0 = ⟨0.818, 0.182⟩.

First, let’s expand the formula.

P (S1|o0:1)

= αP (o1|S1)
∑
s0

P (S1|s0)P (s0|o0)

= αP (o1|S1) ∗
(
P (S1|s0) ∗ P (s0|o0) + P (S1|¬s0) ∗ P (¬s0|o0)

)
= α⟨P (o1|s1), P (o1|¬s1)⟩

∗
(
⟨P (s1|s0), P (¬s1|s0)⟩ ∗ P (s0|o0)

+ ⟨P (s1|¬s0), P (¬s1|¬s0)⟩ ∗ P (¬s0|o0)
)
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A Filtering Example - Recursive Case of Forward Recursion

Calculate f0:1 = αP (o1|S1)
∑
s0

P (S1|s0)f0:0

where f0:0 = ⟨0.818, 0.182⟩.

P (S1|o0:1) = α⟨P (o1|s1), P (o1|¬s1)⟩
∗ (⟨P (s1|s0), P (¬s1|s0)⟩ ∗ P (s0|o0)

+ ⟨P (s1|¬s0), P (¬s1|¬s0)⟩ ∗ P (¬s0|o0))

= α⟨0.9, 0.2⟩ (⟨0.7, 0.3⟩ ∗ 0.818 + ⟨0.3, 0.7⟩ ∗ 0.182)
= α⟨0.9, 0.2⟩ (⟨0.5726, 0.2454⟩+ ⟨0.0546, 0.1274⟩)
= α⟨0.9, 0.2⟩ ∗ ⟨0.6272, 0.3728⟩
= α⟨0.56448, 0.07456⟩
= ⟨0.883, 0.117⟩
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Example: Filtering

Consider a hidden Markov model with 4 time steps.

P (s0) = 0.4

P (st|st−1) = 0.7
P (st|¬st−1) = 0.2

P (ot|st) = 0.9
P (ot|¬st) = 0.2

S0 S1 S2 S3

O0 O1 O2 O3

Calculate P (S2|o0 ∧ o1 ∧ o2).

→ i.e. αf0:2
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Filtering (time k)

How did we derive the formula for P (Sk|o0:k)?

P (Sk|o0:k)
= P (Sk|ok ∧ o0:(k−1)) (1)

= αP (ok|Sk ∧ o0:(k−1))P (Sk|o0:(k−1)) (2)

= αP (ok|Sk)P (Sk|o0:(k−1)) (3)

= αP (ok|Sk)
∑
sk−1

P (Sk ∧ sk−1|o0:(k−1)) (4)

= αP (ok|Sk)
∑
sk−1

P (Sk|sk−1 ∧ o0:(k−1))P (sk−1|o0:(k−1)) (5)

= αP (ok|Sk)
∑
sk−1

P (Sk|sk−1)P (sk−1|o0:(k−1)) (6)
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Q: Filtering (time k)

Q #1: What is the justification for the step below?

P (Sk|o0:k)
= P (Sk|ok ∧ o0:(k−1))

(A) Bayes’ rule

(B) Re-writing the expression

(C) The chain/product rule

(D) The Markov assumption

(E) The sum rule

→ Correct answer is (B) Re-writing the expression.
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Filtering (time k)

Q #2: What is the justification for the step below?

= P (Sk|ok ∧ o0:(k−1))

= αP (ok|Sk ∧ o0:(k−1))P (Sk|o0:(k−1))

(A) Bayes’ rule

(B) Re-writing the expression

(C) The chain/product rule

(D) The Markov assumption

(E) The sum rule

→ Correct answer is (A) Bayes’ rule.
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Filtering (time k)

Q #2: What is the justification for the step below?

= P (Sk|ok ∧ o0:(k−1))

= αP (ok|Sk ∧ o0:(k−1))P (Sk|o0:(k−1))

(A) Bayes’ rule

(B) Re-writing the expression

(C) The chain/product rule

(D) The Markov assumption

(E) The sum rule
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Filtering (time k)

Q #3: What is the justification for the step below?

= αP (ok|Sk ∧ o0:(k−1))P (Sk|o0:(k−1))

= αP (ok|Sk)P (Sk|o0:(k−1))

(A) Bayes’ rule

(B) Re-writing the expression

(C) The chain/product rule

(D) The Markov assumption

(E) The sum rule

→ Correct answer is (D) The Markov assumption.
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Filtering (time k)

Q #3: What is the justification for the step below?

= αP (ok|Sk ∧ o0:(k−1))P (Sk|o0:(k−1))

= αP (ok|Sk)P (Sk|o0:(k−1))

(A) Bayes’ rule

(B) Re-writing the expression
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(D) The Markov assumption
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Filtering (time k)

Q #4: What is the justification for the step below?

= αP (ok|Sk)P (Sk|o0:(k−1))

= αP (ok|Sk)
∑
sk−1

P (Sk ∧ sk−1|o0:(k−1))

(A) Bayes’ rule

(B) Re-writing the expression

(C) The chain/product rule

(D) The Markov assumption

(E) The sum rule

→ Correct answer is (E) The sum rule.
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Filtering (time k)

Q #4: What is the justification for the step below?

= αP (ok|Sk)P (Sk|o0:(k−1))

= αP (ok|Sk)
∑
sk−1

P (Sk ∧ sk−1|o0:(k−1))

(A) Bayes’ rule

(B) Re-writing the expression

(C) The chain/product rule

(D) The Markov assumption

(E) The sum rule

→ Correct answer is (E) The sum rule.
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Filtering (time k)

Q #5: What is the justification for the step below?

= αP (ok|Sk)
∑
sk−1

P (Sk ∧ sk−1|o0:(k−1))

= αP (ok|Sk)
∑
sk−1

P (Sk|sk−1 ∧ o0:(k−1))P (sk−1|o0:(k−1))

(A) Bayes’ rule

(B) Re-writing the expression

(C) The chain/product rule

(D) The Markov assumption

(E) The sum rule

→ Correct answer is (C) The chain/product rule.
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Filtering (time k)

Q #5: What is the justification for the step below?

= αP (ok|Sk)
∑
sk−1

P (Sk ∧ sk−1|o0:(k−1))

= αP (ok|Sk)
∑
sk−1

P (Sk|sk−1 ∧ o0:(k−1))P (sk−1|o0:(k−1))

(A) Bayes’ rule

(B) Re-writing the expression

(C) The chain/product rule

(D) The Markov assumption

(E) The sum rule

→ Correct answer is (C) The chain/product rule.
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Filtering (time k)

Q #6: What is the justification for the step below?

= αP (ok|Sk)
∑
sk−1

P (Sk|sk−1 ∧ o0:(k−1))P (sk−1|o0:(k−1))

= αP (ok|Sk)
∑
sk−1

P (Sk|sk−1)P (sk−1|o0:(k−1))

(A) Bayes’ rule

(B) Re-writing the expression

(C) The chain/product rule

(D) The Markov assumption

(E) The sum rule

→ Correct answer is (D) The Markov assumption.
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Filtering (time k)

Q #6: What is the justification for the step below?

= αP (ok|Sk)
∑
sk−1

P (Sk|sk−1 ∧ o0:(k−1))P (sk−1|o0:(k−1))

= αP (ok|Sk)
∑
sk−1

P (Sk|sk−1)P (sk−1|o0:(k−1))

(A) Bayes’ rule

(B) Re-writing the expression

(C) The chain/product rule

(D) The Markov assumption

(E) The sum rule

→ Correct answer is (D) The Markov assumption.
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Revisiting Learning Goals

▶ Construct a hidden Markov model given a real-world scenario.

▶ Explain the independence assumptions in a hidden Markov
model.

▶ Calculating the filtering probability for a time step in a hidden
Markov model.

▶ Describe the justification for a step in the derivation of the
filtering formulas.
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